
1 Main Result

Want to prove
bsimp(bder(c, a)) = bsimp(bder(c, bsimp(a))). (1)

For simplicity, we use s to denote bsimp and use a\c or d c a to denote bder(c, a), then we can write the equation we want
to prove in the following manner:

s d c a = s d c s a

Specifically, we are interested in the case where a = a1 + a2. The inductive hypothesis is that

s d c a1 = s d c s a1 and s d c a2 = s d c s a2.

We want to prove that the LHS of (1) is equal to the RHS of (1). For better readability the bits are ommitted as they don’t
inhibit the proof process but just adds to the nuisance of writing. LHS can be manipulated successively as follows:

LHS = s (a1 + a2)\c
= s (a1\c + a2\c)

Lemma 1
= s(s(a1\c) + s(a2\c))

Lemma 2
= s(s(a1)\c + s(a2)\c).

RHS can be manipulated this way:

RHS = s [(s(a1 + a2)]\c

If we refer to s(a1 + a2) as core, then we have

RHS = s (core\c)

and then

core = s ALTS(bs, a1 + a2)
bsimp def

= Li(ALTS(bs, dB(flats(s(a1) + s(a2))))

Here we use Li to refer to the operation that opens up the ALTS when it has 1 element, returns 0 when it has 0 elements or
does nothing when there are 2 or more elements in the list rs in ALTS(bs, rs)(in scala code corresponds to the case clauses).

Now in order to establish that LHS = RHS, we need to prove the transformed results we got above for LHS and RHS
are equal to each other. That is,

s(s(a1)\c + s(a2)\c) = Li(ALTS(bs, dB(flats(s(a1) + s(a2))))

We shall call the two sides of the above equation LHS′ and RHS′. To prove this equality we just need to consider what s(a1)
and s(a2) look like. There are three interesting possibility for each, namely s(ai) is an alt, a star or a sequence. Combined
that is 9 possibilities. We just need to investigate each of these 9 possibilities. Here we only one of the 9 cases. The others
are handled in a similar fashion.

When s(a1) = ALTS(bs1, as1) and s(a2) = ALTS(bs2, as2),

LHS’
=

s(ALTS(bs,ALTS(bs1, as1)\c + ALTS(bs2, as2)\c))
=

s(ALTS(bs,ALTS(bs1, as1.map\c) + ALTS(bs2, as2.map\c)))
Lemma 3

=
s(ALTS(bs, (as1.map\c).map(fuse(bs1)) + (as2.map\c).map(fuse(bs2))))

And then we deal with RHS′: RHS′
Lemma 4

=
s(ALTS(bs, (as1.map\c).map(fuse(bs1)) + +(as2.map\c).map(fuse(bs2))))
and this completes the proof.

Lemma 1. doing simplification in advance to subparts
We have that for any annotated regular expressions a1 a2 and bitcode bs,
bsimp(ALTS(bs, a1, a2)) = bsimp(ALTS(bs, bsimp(a1), bsimp(a2)))

Lemma 2. combination of lemma 1 and inductive hypothesis(from now on use simple notation)
We have that for any annotated regular expressions a1 a2 and bitcode bs, s(s(a1\c) + s(a2\c)) = s(s(a1)\c + s(a2)\c)

1

Lemma 3. Spilling out ALTS does not affect simplification result
s(ALTS(bs,ALTS(bs1, as1.map\c) + ALTS(bs2, as2.map\c)))
Lemma 3

=
s(ALTS(bs, (as1.map\c).map(fuse(bs1)) + (as2.map\c).map(fuse(bs2))))

Lemma 4. deleting duplicates does not affect simplification result
s(ALTS(bs, (as1.map\c).map(fuse(bs1)) + (as2.map\c).map(fuse(bs2))))
=
s(ALTS(bs, dB((as1.map\c).map(fuse(bs1)) + (as2.map\c).map(fuse(bs2)))))

Lemma 5. mkepsBC invariant manipulation of bits and notation
ALTS(bs, ALTS(bs1, rs1), ALTS(bs2, rs2)) ∼mε ALTS(bs, rs1.map(fuse(bs1,)) ++ rs2.map(fuse(bs2,))).
We also use bs2 >> rs2 as a shorthand notation for rs2.map(fuse(bs2,)).

Lemma 6. What does dB do to two already simplified ALTS
dCo(ALTS(bs, dB(bs1 >> rs1 + +bs2 >> rs2))) = dCo(ALTS(bs, bs1 >> rs1 + +((bs2 >> rs2)−−rs1)))

Proof. We prove that dB(bs1 >> rs1 + +bs2 >> rs2) = bs1 >> rs1 + +((bs2 >> rs2)−−rs1).

Lemma 7. after opening two previously simplified alts up into terms, length must exceed 2
If sr1, sr2 are of the form ALTS(bs1, rs1), ALTS(bs2, rs2) respectively, then we have that Co(bs, (bs1 >> rs1) + +(bs2 >>
rs2)−−rs1) = ALTS(bs, bs1 >> rs1 + +(bs2 >> rs2)−−rs1)

Proof. Co(bs, rs) ∼mε ALTS(bs, rs) if rs is a list of length greater than or equal to 2. As suggested by the title of this
lemma, ALTS(bs1, rs1) is a result of simplification, which means that rs1 must be composed of at least 2 distinct regular
terms. This alone says that bs1 >> rs1 + +(bs2 >> rs2)−−rs1 is a list of length greater than or equal to 2, as the second
operand of the concatenation operator (bs2 >> rs2) − −rs1 can only contribute a non-negative value to the overall length
of the list bs1 >> rs1 + +(bs2 >> rs2)−−rs1.

Lemma 8. mkepsBC equivalence w.r.t syntactically different regular expressions(2 ALTS+ some deletion after derivatives)
dALTS(bs, bs1 >> rs1 + +bs2 >> rs2) ∼mε dALTS(bs, bs1 >> rs1 + +((bs2 >> rs2)−−rs1))

Proof. Let’s call bs1 >> rs1 rs1′ and bs2 >> rs2 rs2′. Then we need to prove dALTS(bs, rs1′++rs2′) ∼mε dALTS(bs, rs1′+
+(rs2′ −−rs1′)).
We might as well omit the prime in each rs for simplicty of notation and prove dALTS(bs, rs1++rs2) ∼mε dALTS(bs, rs1+
+(rs2−−rs1)).
We know that the result of derivative is nullable, so there must exist an r in rs1++rs2 s.t. r is nullable.
If r ∈ rs1, then equivalence holds. If r ∈ rs2 ∧ r /∈ rs1, equivalence holds as well. This completes the proof.

Lemma 9. nullability relation between a regex and its simplified version
r nullable ⇐⇒ sr nullable

Lemma 10. concatenation + simp invariance of mkepsBC
mkepsBCr1 · sr2 = mkepsBCr1 · r2 if both r1 and r2 are nullable.

Theorem 1. Correctness Result

• When s is a string in the language L(ar),
ders simp(ar, s) ∼mε ders(ar, s),

• when s is not a string of the language L(ar) ders simp(ar, s) is not nullable

Proof. Split into 2 parts.

• When we have an annotated regular expression ar and a string s that matches ar, by the correctness of the algorithm
ders, we have that ders(ar, s) is nullable, and that mkepsBC will extract the desired bits for decoding the correct value v
for the matching, and v is a POSIX value. Now we prove that mkepsBC(ders simp(ar, s)) yields the same bitsequence.
We first open up the ders simp function into nested alternating sequences of ders and simp. Assume that s = c1...cn(n ≥
1) where each of the ci are characters. Then ders simp(ar, s) = s(dcn(...s(dc1(r))...)) = sdsd......sdr. If we can prove
that sdr ∼mε dsr holds for any regular expression and any character, then we are done. This is because then we can
push ders operation inside and move simp operation outside and have that sdsd...sdr ∼mε ssddsdsd...sdr ∼mε ... ∼mε
s....sd....dr. Using Lemma 1 we have that s...sd....dr = sd...dr. By Lemma 2, we have RHS ∼mε d...dr.

2

Notice that we don’t actually need Lemma 1 here. That is because by Lemma 2, we can have that s...sd....dr ∼mε sd...dr.
The equality above can be replaced by mkepsBC equivalence without affecting the validity of the whole proof since all
we want is mkepsBC equivalence, not equality.

Now we proceed to prove that sdr ∼mε dsr. This can be reduced to proving dr ∼mε dsr as we know that dr ∼mε sdr
by Lemma 2.

we use an induction proof. Base cases are omitted. Here are the 3 inductive cases.

– r1 + r2
The most difficult case is when sr1 and sr2 are both ALTS, so that they will be opened up in the flats function
and some terms in sr2 might be deleted. Or otherwise we can use the argument that d(r1 + r2) = dr1 + dr2 ∼mε
dsr1 +dsr2 ∼mε ds(r1 +r2), the last equivalence being established by Lemma 3. When s(r1), s(r2) are both ALTS,
we have to be more careful for the last equivalence step, namelly, dsr1 + dsr2 ∼mε ds(r1 + r2).
We have that LHS = dsr1 + dsr2 = d(sr1 + sr2). Since sr1 = ALTS(bs1, rs1) and sr2 = ALTS(bs2, rs2) we
have d(sr1 + sr2) ∼mε d(ALTS(bs, bs1 >> rs1 + +bs2 >> rs2)) by Lemma 4. On the other hand, RHS =
ds(ALTS(bs, r1, r2)) = dCo(bs, dB(flats(s(r1), s(r2)))) = dCo(bs, dB(bs1 >> rs1 + +bs2 >> rs2)) by definition
of bsimp and flats.
dCo(bs, dB(bs1 >> rs1 + +bs2 >> rs2)) = dCo(bs, (bs1 >> rs1 + +((bs2 >> rs2)−−rs1))) by Lemma 6.
dCo(bs, (bs1 >> rs1 + +((bs2 >> rs2) − −rs1))) = d(ALTS(bs, bs1 >> rs1 + +(bs2 >> rs2) − −rs1)) by
Lemma 7.
Using Lemma 8, we have d(ALTS(bs, bs1 >> rs1 + +(bs2 >> rs2) − −rs1)) ∼mε d(ALTS(bs, bs1 >> rs1 +
+bs2 >> rs2)) ∼mε RHS.
This completes the proof.

– r∗
s(r∗) = r∗. Our goal is trivially achieved.

– r1 · r2
When r1 is nullable, dsr1r2 = dsr1 · sr2 +dsr2 ∼mε dr1 · sr2 +dr2 = dr1 · r2 +dr2. The last step uses Lemma 10.
When r1 is not nullable, dsr1r2 = dsr1 · sr2 ∼mε dr1 · sr2 ∼mε dr1 · r2

• Proof of second part of the theorem: use a similar structure of argument as in the first part.

• This proof has a major flaw: it assumes all dr is nullable along the path of deriving r by s. But it could be the case
that s ∈ L(r) but ∃s′ ∈ Pref(s) s.t. ders(s′, r) is not nullable (or equivalently, s′ /∈ L(r)). One remedy for this is to
replace the mkepsBC equivalence relation into some other transitive relation that entails mkepsBC equivalence.

Theorem 2. This is a very strong claim that has yet to be more carefully examined and proved. However, experiments
suggest a very good hope for this.
Define pushbits as the following:

def pushbits(r: ARexp): ARexp = r match {

case AALTS(bs, rs) => AALTS(Nil, rs.map(r=>fuse(bs, pushbits(r))))

case ASEQ(bs, r1, r2) => ASEQ(bs, pushbits(r1), pushbits(r2))

case r => r

}

Then we have pushbits(ders simp(ar, s)) == simp(ders(ar, s)) or ders simp(ar, s) == simp(ders(ar, s)).
Unfortunately this does not hold. A counterexample is

baa

original regex

STA

-ALT

-STA List(Z)

| -a

-ALT List(S)

-b List(Z)

-a List(S)

3

regex after ders simp

ALT List(S, S, Z, C(b))

-SEQ

| -STA List(S, Z, S, C(a), S, C(a))

| | -a

| -STA

| -ALT

| -STA List(Z)

| | -a

| -ALT List(S)

| -b List(Z)

| -a List(S)

-SEQ List(S, Z, S, C(a), Z)

-ALT List(S)

| -STA List(Z, S, C(a))

| | -a

| -ONE List(S, S, C(a))

-STA

-ALT

-STA List(Z)

| -a

-ALT List(S)

-b List(Z)

-a List(S)

regex after ders

ALT

-SEQ

| -ALT List(S)

| | -SEQ List(Z)

| | | -ZERO

| | | -STA

| | | -a

| | -ALT List(S)

| | -ZERO

| | -ZERO

| -STA

| -ALT

| -STA List(Z)

| | -a

| -ALT List(S)

| -b List(Z)

| -a List(S)

-ALT List(S, S, Z, C(b))

-SEQ

| -ALT List(S)

| | -ALT List(Z)

| | | -SEQ

| | | | -ZERO

| | | | -STA

| | | | -a

| | | -SEQ List(S, C(a))

| | | -ONE List(S, C(a))

| | | -STA

| | | -a

| | -ALT List(S)

| | -ZERO

| | -ZERO

| -STA

| -ALT

| -STA List(Z)

4

| | -a

| -ALT List(S)

| -b List(Z)

| -a List(S)

-SEQ List(S, Z, S, C(a), Z)

-ALT List(S)

| -SEQ List(Z)

| | -ONE List(S, C(a))

| | -STA

| | -a

| -ALT List(S)

| -ZERO

| -ONE List(S, C(a))

-STA

-ALT

-STA List(Z)

| -a

-ALT List(S)

-b List(Z)

-a List(S)

regex after ders and then a single simp

ALT

-SEQ List(S, S, Z, C(b))

| -STA List(S, Z, S, C(a), S, C(a))

| | -a

| -STA

| -ALT

| -STA List(Z)

| | -a

| -ALT List(S)

| -b List(Z)

| -a List(S)

-SEQ List(S, S, Z, C(b), S, Z, S, C(a), Z)

-ALT List(S)

| -STA List(Z, S, C(a))

| | -a

| -ONE List(S, S, C(a))

-STA

-ALT

-STA List(Z)

| -a

-ALT List(S)

-b List(Z)

-a List(S)

5

	Main Result

