
This is an outline of the structure of the paper with a little bit of flesh in it.

1 The Flow of thought process

Definition 1. Regular Expressions and values

TODO

Value is.a parse tree for the regular expression matching the string.

Definition 2. nullable

TODO

The idea behind nullable: whether it contains the empty string.

Definition 3. derivatives TODO

This definition can be used for matching algorithm.

Definition 4. matcher TODO

Definition 5. POSIX values TODO

Definition 6. POSIX lexer algorithm TODO

Definition 7. POSIX lexer algorithm with simplification TODO

This simplification algorithm is rather complicated as it entangles derivative, simplification and value reconstruction. We
need to split the regular expression structure of the information for lexing so that simplifcation only changes the regex but
does not destroy the information for reconstructing the resulting value.

Introduce regex with auxiliary information:

Definition 8. annotated regular expression TODO

Definition 9. encoding TODO

Encoding translates values into bit codes with some information loss.

Definition 10. decoding TODO

Decoding translates bitcodes back into values with the help of regex to recover the structure.

During different phases of lexing, we sometimes already know what the value would look like if we match the branch of
regex with the string(e.g. a STAR with 1 more iteration, a left/right value), so we can partially encode the value at diffferent
phases of the algorithm for later decoding.
Examples of such partial encoding:

Definition 11. internalise TODO

When doing internalise on ALT:
Whichever branch is chosen, we know exactly the shape of the value, and therefore can get the bit code for such a value:
Left corresponds to Z and Right to S

Definition 12. bmkeps TODO

bmkeps on the STAR case:
We know there could be no more iteration for a star if we want to get a POSIX value for an empty string, so the value must
be Stars [], corresponding to an S in the bit code.

Definition 13. bder TODO

SEQ case with the first regex nullable:
bmkeps will extract the value for how a1 mathces the empty string and encode it into a bit sequence.

Definition 14. blexer

TODO
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adding simplifcation.

size of simplified regex: smaller than Antimirov’s pder.

The rest of the document is the residual from a previous doc and may be deleted.

Definition 15. bsimp

def bsimp(r: ARexp): ARexp = r match {

case ASEQ(bs1, r1, r2) => (bsimp(r1), bsimp(r2)) match {

case (AZERO, _) => AZERO

case (_, AZERO) => AZERO

case (AONE(bs2), r2s) => fuse(bs1 ++ bs2, r2s)

case (r1s, r2s) => ASEQ(bs1, r1s, r2s)

}

case AALTS(bs1, rs) => {

val rs_simp = rs.map(bsimp)

val flat_res = flats(rs_simp)

val dist_res = distinctBy(flat_res, erase)

dist_res match {

case Nil => AZERO

case s :: Nil => fuse(bs1, s)

case rs => AALTS(bs1, rs)

}

}

//case ASTAR(bs, r) => ASTAR(bs, bsimp(r))

case r => r

}

Definition 16. sub-parts of bsimp

• flats
flattens the list.

• dB
means distinctBy

• Co
The last matching clause of the function bsimp, with a slight modification to suit later reasoning.

def Co(bs1, rs): ARexp = {

rs match {

case Nil => AZERO

case s :: Nil => fuse(bs1, s)

case rs => AALTS(bs1, rs)

}

Definition 17. fuse

def fuse(bs: Bits, r: ARexp) : ARexp = r match {

case AZERO => AZERO

case AONE(cs) => AONE(bs ++ cs)

case ACHAR(cs, f) => ACHAR(bs ++ cs, f)

case AALTS(cs, rs) => AALTS(bs ++ cs, rs)

case ASEQ(cs, r1, r2) => ASEQ(bs ++ cs, r1, r2)

case ASTAR(cs, r) => ASTAR(bs ++ cs, r)

}

Definition 18. mkepsBC

def mkepsBC(r: ARexp) : Bits = r match {

case AONE(bs) => bs
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case AALTS(bs, rs) => {

val n = rs.indexWhere(bnullable)

bs ++ mkepsBC(rs(n))

}

case ASEQ(bs, r1, r2) => bs ++ mkepsBC(r1) ++ mkepsBC(r2)

case ASTAR(bs, r) => bs ++ List(Z)

}

Definition 19. mkepsBC equicalence
Given 2 nullable annotated regular expressions r1, r2, if mkepsBC(r1) == mkepsBC(r2) then r1 and r2 are mkepsBC
equivalent, denoted as r1 ∼mε r2

Definition 20. shorthand notation for ders
For the sake of reducing verbosity, we sometimes use the shorthand notation dc(r) for the function application bder(c, r) and
s(r)(s here stands for simplification) for the function application bsimp(r) .
We omit the subscript when it is clear from context what that character is and write d(r) instead of dc(r).
And we omit the parentheses when no confusion can be caused. For example ders simp(c, r) can be written as s(dc(r)) or
even sdr as we know the derivative operation is w.r.t the character c. Here the s and d are more like operators that take an
annotated regular expression as an input and return an annotated regular expression as an output

Definition 21. distinctBy operation expressed in a different way–how it transforms the list
Given two lists rs1 and rs2, we define the operation −−:
rs1−−rs2 := [r ∈ rs1|r /∈ rs2] Note that the order each term appears in rs1 −−rs2 is preserved as in the original list.

2 Main Result

Lemma 1. simplification function does not simplify an already simplified regex
bsimp(r) == bsimp(bsimp(r)) holds for any annotated regular expression r.

Lemma 2. simp and mkeps
When r is nullable, we have that mkeps(bsimp(r)) == mkeps(r)

Lemma 3. mkeps equivalence w.r.t some syntactically different regular expressions(1 ALTS)
When one of the 2 regular expressions s(r1) and s(r2) is of the form ALTS(bs1, rs1), we have that ds(ALTS(bs, r1, r2)) ∼mε
d(ALTS(bs, sr1, sr2))

Proof. By opening up one of the alts and show no additional changes are made.
Details: ds(ALTS(bs, r1, r2)) = dCo(bs, dB(flats(sr1, sr2)))

Lemma 4. mkepsBC invariant manipulation of bits and notation
ALTS(bs, ALTS(bs1, rs1), ALTS(bs2, rs2)) ∼mε ALTS(bs, rs1.map(fuse(bs1, )) ++ rs2.map(fuse(bs2, )) ).
We also use bs2 >> rs2 as a shorthand notation for rs2.map(fuse(bs2, )).

Lemma 5. mkepsBC equivalence w.r.t syntactically different regular expressions(2 ALTS)
sr1 = ALTS(bs1, rs1) and sr2 = ALTS(bs2, rs2) we have d(sr1 + sr2) ∼mε d(ALTS(bs, bs1 >> rs1 + +bs2 >> rs2))

Proof. We are just fusing bits inside here, there is no other structural change.

Lemma 6. What does dB do to two already simplified ALTS
dCo(ALTS(bs, dB(bs1 >> rs1 + +bs2 >> rs2))) = dCo(ALTS(bs, bs1 >> rs1 + +((bs2 >> rs2)−−rs1)))

Proof. We prove that dB(bs1 >> rs1 + +bs2 >> rs2) = bs1 >> rs1 + +((bs2 >> rs2)−−rs1).

Lemma 7. after opening two previously simplified alts up into terms, length must exceed 2
If sr1, sr2 are of the form ALTS(bs1, rs1), ALTS(bs2, rs2) respectively, then we have that Co(bs, (bs1 >> rs1) + +(bs2 >>
rs2)−−rs1) = ALTS(bs, bs1 >> rs1 + +(bs2 >> rs2)−−rs1)

Proof. Co(bs, rs) ∼mε ALTS(bs, rs) if rs is a list of length greater than or equal to 2. As suggested by the title of this
lemma, ALTS(bs1, rs1) is a result of simplification, which means that rs1 must be composed of at least 2 distinct regular
terms. This alone says that bs1 >> rs1 + +(bs2 >> rs2)−−rs1 is a list of length greater than or equal to 2, as the second
operand of the concatenation operator (bs2 >> rs2) − −rs1 can only contribute a non-negative value to the overall length
of the list bs1 >> rs1 + +(bs2 >> rs2)−−rs1.
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Lemma 8. mkepsBC equivalence w.r.t syntactically different regular expressions(2 ALTS+ some deletion after derivatives)
dALTS(bs, bs1 >> rs1 + +bs2 >> rs2) ∼mε dALTS(bs, bs1 >> rs1 + +((bs2 >> rs2)−−rs1))

Proof. Let’s call bs1 >> rs1 rs1′ and bs2 >> rs2 rs2′. Then we need to prove dALTS(bs, rs1′++rs2′) ∼mε dALTS(bs, rs1′+
+(rs2′ −−rs1′)).
We might as well omit the prime in each rs for simplicty of notation and prove dALTS(bs, rs1++rs2) ∼mε dALTS(bs, rs1+
+(rs2−−rs1)).
We know that the result of derivative is nullable, so there must exist an r in rs1++rs2 s.t. r is nullable.
If r ∈ rs1, then equivalence holds. If r ∈ rs2 ∧ r /∈ rs1, equivalence holds as well. This completes the proof.

Lemma 9. nullability relation between a regex and its simplified version
r nullable ⇐⇒ sr nullable

Lemma 10. concatenation + simp invariance of mkepsBC
mkepsBCr1 · sr2 = mkepsBCr1 · r2 if both r1 and r2 are nullable.

Theorem 1. Correctness Result

• When s is a string in the language L(ar),
ders simp(ar, s) ∼mε ders(ar, s),

• when s is not a string of the language L(ar) ders simp(ar, s) is not nullable

Proof. Split into 2 parts.

• When we have an annotated regular expression ar and a string s that matches ar, by the correctness of the algorithm
ders, we have that ders(ar, s) is nullable, and that mkepsBC will extract the desired bits for decoding the correct value v
for the matching, and v is a POSIX value. Now we prove that mkepsBC(ders simp(ar, s)) yields the same bitsequence.
We first open up the ders simp function into nested alternating sequences of ders and simp. Assume that s = c1...cn(n ≥
1 ) where each of the ci are characters. Then ders simp(ar, s) = s(dcn(...s(dc1(r))...)) = sdsd......sdr. If we can prove
that sdr ∼mε dsr holds for any regular expression and any character, then we are done. This is because then we can
push ders operation inside and move simp operation outside and have that sdsd...sdr ∼mε ssddsdsd...sdr ∼mε ... ∼mε
s....sd....dr. Using ?? we have that s...sd....dr = sd...dr. By ??, we have RHS ∼mε d...dr.
Notice that we don’t actually need ?? here. That is because by ??, we can have that s...sd....dr ∼mε sd...dr. The
equality above can be replaced by mkepsBC equivalence without affecting the validity of the whole proof since all we
want is mkepsBC equivalence, not equality.

Now we proceed to prove that sdr ∼mε dsr. This can be reduced to proving dr ∼mε dsr as we know that dr ∼mε sdr
by ??.

we use an induction proof. Base cases are omitted. Here are the 3 inductive cases.

– r1 + r2
The most difficult case is when sr1 and sr2 are both ALTS, so that they will be opened up in the flats function
and some terms in sr2 might be deleted. Or otherwise we can use the argument that d(r1 + r2) = dr1 + dr2 ∼mε
dsr1 + dsr2 ∼mε ds(r1 + r2), the last equivalence being established by ??. When s(r1), s(r2) are both ALTS, we
have to be more careful for the last equivalence step, namelly, dsr1 + dsr2 ∼mε ds(r1 + r2).
We have that LHS = dsr1 + dsr2 = d(sr1 + sr2). Since sr1 = ALTS(bs1, rs1) and sr2 = ALTS(bs2, rs2)
we have d(sr1 + sr2) ∼mε d(ALTS(bs, bs1 >> rs1 + +bs2 >> rs2)) by ??. On the other hand, RHS =
ds(ALTS(bs, r1, r2)) = dCo(bs, dB(flats(s(r1), s(r2)))) = dCo(bs, dB(bs1 >> rs1 + +bs2 >> rs2)) by definition
of bsimp and flats.
dCo(bs, dB(bs1 >> rs1 + +bs2 >> rs2)) = dCo(bs, (bs1 >> rs1 + +((bs2 >> rs2)−−rs1))) by ??.
dCo(bs, (bs1 >> rs1 + +((bs2 >> rs2)−−rs1))) = d(ALTS(bs, bs1 >> rs1 + +(bs2 >> rs2)−−rs1)) by ??.
Using ??, we have d(ALTS(bs, bs1 >> rs1 + +(bs2 >> rs2) − −rs1)) ∼mε d(ALTS(bs, bs1 >> rs1 + +bs2 >>
rs2)) ∼mε RHS.
This completes the proof.

– r∗
s(r∗) = r∗. Our goal is trivially achieved.

– r1 · r2
When r1 is nullable, dsr1r2 = dsr1 · sr2 + dsr2 ∼mε dr1 · sr2 + dr2 = dr1 · r2 + dr2. The last step uses ??. When
r1 is not nullable, dsr1r2 = dsr1 · sr2 ∼mε dr1 · sr2 ∼mε dr1 · r2
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• Proof of second part of the theorem: use a similar structure of argument as in the first part.

• This proof has a major flaw: it assumes all dr is nullable along the path of deriving r by s. But it could be the case
that s ∈ L(r) but ∃s′ ∈ Pref(s) s.t. ders(s′, r) is not nullable (or equivalently, s′ /∈ L(r)). One remedy for this is to
replace the mkepsBC equivalence relation into some other transitive relation that entails mkepsBC equivalence.

Theorem 2. This is a very strong claim that has yet to be more carefully examined and proved. However, experiments
suggest a very good hope for this.
Define pushbits as the following:

def pushbits(r: ARexp): ARexp = r match {

case AALTS(bs, rs) => AALTS(Nil, rs.map(r=>fuse(bs, pushbits(r))))

case ASEQ(bs, r1, r2) => ASEQ(bs, pushbits(r1), pushbits(r2))

case r => r

}

Then we have pushbits(ders simp(ar, s)) == simp(ders(ar, s)) or ders simp(ar, s) == simp(ders(ar, s)).
Unfortunately this does not hold. A counterexample is

baa

original regex

STA

-ALT

-STA List(Z)

| -a

-ALT List(S)

-b List(Z)

-a List(S)

regex after ders simp

ALT List(S, S, Z, C(b))

-SEQ

| -STA List(S, Z, S, C(a), S, C(a))

| | -a

| -STA

| -ALT

| -STA List(Z)

| | -a

| -ALT List(S)

| -b List(Z)

| -a List(S)

-SEQ List(S, Z, S, C(a), Z)

-ALT List(S)

| -STA List(Z, S, C(a))

| | -a

| -ONE List(S, S, C(a))

-STA

-ALT

-STA List(Z)

| -a

-ALT List(S)

-b List(Z)

-a List(S)

regex after ders

ALT

-SEQ

| -ALT List(S)

| | -SEQ List(Z)
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| | | -ZERO

| | | -STA

| | | -a

| | -ALT List(S)

| | -ZERO

| | -ZERO

| -STA

| -ALT

| -STA List(Z)

| | -a

| -ALT List(S)

| -b List(Z)

| -a List(S)

-ALT List(S, S, Z, C(b))

-SEQ

| -ALT List(S)

| | -ALT List(Z)

| | | -SEQ

| | | | -ZERO

| | | | -STA

| | | | -a

| | | -SEQ List(S, C(a))

| | | -ONE List(S, C(a))

| | | -STA

| | | -a

| | -ALT List(S)

| | -ZERO

| | -ZERO

| -STA

| -ALT

| -STA List(Z)

| | -a

| -ALT List(S)

| -b List(Z)

| -a List(S)

-SEQ List(S, Z, S, C(a), Z)

-ALT List(S)

| -SEQ List(Z)

| | -ONE List(S, C(a))

| | -STA

| | -a

| -ALT List(S)

| -ZERO

| -ONE List(S, C(a))

-STA

-ALT

-STA List(Z)

| -a

-ALT List(S)

-b List(Z)

-a List(S)

regex after ders and then a single simp

ALT

-SEQ List(S, S, Z, C(b))

| -STA List(S, Z, S, C(a), S, C(a))

| | -a

| -STA

| -ALT

| -STA List(Z)

| | -a
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| -ALT List(S)

| -b List(Z)

| -a List(S)

-SEQ List(S, S, Z, C(b), S, Z, S, C(a), Z)

-ALT List(S)

| -STA List(Z, S, C(a))

| | -a

| -ONE List(S, S, C(a))

-STA

-ALT

-STA List(Z)

| -a

-ALT List(S)

-b List(Z)

-a List(S)
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