
POSIX Regular Expression Matching and Lexing
Chengsong Tan

King’s College London
London, UK
chengsong.tan@kcl.ac.uk

Abstract
Brzozowski introduced in 1964 a beautifully simple algorithm for regular expression matching
based on the notion of derivatives of regular expressions. In 2014, Sulzmann and Lu extended this
algorithm to not just give a YES/NO answer for whether or not a regular expression matches
a string, but in case it does also answers with how it matches the string. This is important
for applications such as lexing (tokenising a string). The problem is to make the algorithm by
Sulzmann and Lu fast on all inputs without breaking its correctness. We have already developed
some simplification rules for this, but have not yet proved that they preserve the correctness of
the algorithm. We also have not yet looked at extended regular expressions, such as bounded
repetitions, negation and back-references.

1 Introduction

This PhD-project is about regular expression matching and lexing. Given the maturity of
this topic, the reader might wonder: Surely, regular expressions must have already been
studied to death? What could possibly be not known in this area? And surely all imple-
mented algorithms for regular expression matching are blindingly fast?

Unfortunately these preconceptions are not supported by evidence: Take for example
the regular expression (a∗)∗ b and ask whether strings of the form aa..a match this regular
expression. Obviously this is not the case—the expected b in the last position is missing.
One would expect that modern regular expression matching engines can find this out very
quickly. Alas, if one tries this example in JavaScript, Python or Java 8 with strings like 28
a’s, one discovers that this decision takes around 30 seconds and takes considerably longer
when adding a few more a’s, as the graphs below show:

5 10 15 20 25 30

5
10
15
20
25
30

n

tim
e

in
se

cs JavaScript

5 10 15 20 25 30

5
10
15
20
25
30

n

Python

5 10 15 20 25 30
0
5

10
15
20
25
30

n

Java 8

Graphs: Runtime for matching (a∗)∗ b with strings of the form aa..a︸︷︷︸
n

.

These are clearly abysmal and possibly surprising results. One would expect these systems
to do much better than that—after all, given a DFA and a string, deciding whether a string
is matched by this DFA should be linear in terms of the size of the regular expression and
the string?

Admittedly, the regular expression (a∗)∗ b is carefully chosen to exhibit this super-linear
behaviour. But unfortunately, such regular expressions are not just a few outliers. They are

© Chengsong Tan;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 POSIX Regular Expression Matching and Lexing

actually frequent enough to have a separate name created for them—evil regular expressions.
In empiric work, Davis et al report that they have found thousands of such evil regular
expressions in the JavaScript and Python ecosystems [?]. Static analysis approach that
is both sound and complete exists[?], but the running time on certain examples in the
RegExLib and Snort regular expressions libraries is unacceptable. Therefore the problem of
efficiency still remains.

This superlinear blowup in matching algorithms sometimes causes considerable grief in
real life: for example on 20 July 2016 one evil regular expression brought the webpage Stack
Exchange to its knees.1 In this instance, a regular expression intended to just trim white
spaces from the beginning and the end of a line actually consumed massive amounts of CPU-
resources—causing web servers to grind to a halt. This happened when a post with 20,000
white spaces was submitted, but importantly the white spaces were neither at the beginning
nor at the end. As a result, the regular expression matching engine needed to backtrack
over many choices. In this example, the time needed to process the string was O(n2) with
respect to the string length. This quadratic overhead was enough for the homepage of Stack
Exchange to respond so slowly that the load balancer assumed there must be some attack
and therefore stopped the servers from responding to any requests. This made the whole
site become unavailable. Another very recent example is a global outage of all Cloudflare
servers on 2 July 2019. A poorly written regular expression exhibited exponential behaviour
and exhausted CPUs that serve HTTP traffic. Although the outage had several causes, at
the heart was a regular expression that was used to monitor network traffic.2

The underlying problem is that many “real life” regular expression matching engines do
not use DFAs for matching. This is because they support regular expressions that are not
covered by the classical automata theory, and in this more general setting there are quite a
few research questions still unanswered and fast algorithms still need to be developed (for
example how to treat efficiently bounded repetitions, negation and back-references).

There is also another under-researched problem to do with regular expressions and lexing,
i.e. the process of breaking up strings into sequences of tokens according to some regular
expressions. In this setting one is not just interested in whether or not a regular expression
matches a string, but also in how. Consider for example a regular expression rkey for
recognising keywords such as if, then and so on; and a regular expression rid for recognising
identifiers (say, a single character followed by characters or numbers). One can then form
the compound regular expression (rkey + rid)∗ and use it to tokenise strings. But then how
should the string iffoo be tokenised? It could be tokenised as a keyword followed by an
identifier, or the entire string as a single identifier. Similarly, how should the string if be
tokenised? Both regular expressions, rkey and rid, would “fire”—so is it an identifier or a
keyword? While in applications there is a well-known strategy to decide these questions,
called POSIX matching, only relatively recently precise definitions of what POSIX matching
actually means have been formalised [?, ?, ?]. Such a definition has also been given by
Sulzmann and Lu [?], but the corresponding correctness proof turned out to be faulty [?].
Roughly, POSIX matching means matching the longest initial substring. In the case of
a tie, the initial sub-match is chosen according to some priorities attached to the regular
expressions (e.g. keywords have a higher priority than identifiers). This sounds rather simple,
but according to Grathwohl et al [?, Page 36] this is not the case. They wrote:

“The POSIX strategy is more complicated than the greedy because of the dependence

1 https://stackstatus.net/post/147710624694/outage-postmortem-july-20-2016
2 https://blog.cloudflare.com/details-of-the-cloudflare-outage-on-july-2-2019/

http://stackexchange.com
http://stackexchange.com
https://stackstatus.net/post/147710624694/outage-postmortem-july-20-2016
https://blog.cloudflare.com/details-of-the-cloudflare-outage-on-july-2-2019/

Chengsong Tan 3

on information about the length of matched strings in the various subexpressions.”

This is also supported by evidence collected by Kuklewicz [?] who noticed that a number of
POSIX regular expression matchers calculate incorrect results.

Our focus in this project is on an algorithm introduced by Sulzmann and Lu in 2014
for regular expression matching according to the POSIX strategy [?]. Their algorithm is
based on an older algorithm by Brzozowski from 1964 where he introduced the notion of
derivatives of regular expressions [?]. We shall briefly explain this algorithm next.

2 The Algorithm by Brzozowski based on Derivatives of Regular
Expressions

Suppose (basic) regular expressions are given by the following grammar:

r ::= 0 | 1 | c | r1 · r2 | r1 + r2 | r∗

The intended meaning of the constructors is as follows: 0 cannot match any string, 1 can
match the empty string, the character regular expression c can match the character c, and
so on.

The ingenious contribution by Brzozowski is the notion of derivatives of regular expres-
sions. The idea behind this notion is as follows: suppose a regular expression r can match
a string of the form c ::s (that is a list of characters starting with c), what does the regular
expression look like that can match just s? Brzozowski gave a neat answer to this question.
He started with the definition of nullable:

nullable(0) def= false
nullable(1) def= true
nullable(c) def= false
nullable(r1 + r2) def= nullable(r1) ∨ nullable(r2)
nullable(r1 · r2) def= nullable(r1) ∧ nullable(r2)
nullable(r∗) def= true

This function simply tests whether the empty string is in L(r). He then defined the following
operation on regular expressions, written r\c (the derivative of r w.r.t. the character c):

0\c def= 0
1\c def= 0
d\c def= if c = d then 1 else 0
(r1 + r2)\c def= r1\c + r2\c
(r1 · r2)\c def= if nullable(r1)

then (r1\c) · r2 + r2\c
else (r1\c) · r2

(r∗)\c def= (r\c) · r∗

The main property of the derivative operation is that

c ::s ∈ L(r) holds if and only if s ∈ L(r\c).

4 POSIX Regular Expression Matching and Lexing

For us the main advantage is that derivatives can be straightforwardly implemented in any
functional programming language, and are easily definable and reasoned about in theorem
provers—the definitions just consist of inductive datatypes and simple recursive functions.
Moreover, the notion of derivatives can be easily generalised to cover extended regular ex-
pression constructors such as the not-regular expression, written ¬ r, or bounded repetitions
(for example r{n} and r{n..m}), which cannot be so straightforwardly realised within the
classic automata approach. For the moment however, we focus only on the usual basic
regular expressions.

Now if we want to find out whether a string s matches with a regular expression r, we can
build the derivatives of r w.r.t. (in succession) all the characters of the string s. Finally, test
whether the resulting regular expression can match the empty string. If yes, then r matches
s, and no in the negative case. To implement this idea we can generalise the derivative
operation to strings like this:

r\(c ::s) def= (r\c)\s
r\[] def= r

and then define as regular-expression matching algorithm:

match s r
def= nullable(r\s)

This algorithm looks graphically as follows:

r0 r1 r2 rn YES/NO\c0 \c1 nullable? (1)

where we start with a regular expression r0, build successive derivatives until we exhaust
the string and then use nullable to test whether the result can match the empty string. It
can be relatively easily shown that this matcher is correct (that is given an s = c0...cn−1
and an r0, it generates YES if and only if s ∈ L(r0)).

3 Values and the Algorithm by Sulzmann and Lu

One limitation of Brzozowski’s algorithm is that it only produces a YES/NO answer for
whether a string is being matched by a regular expression. Sulzmann and Lu [?] extended
this algorithm to allow generation of an actual matching, called a value or sometimes also
lexical value. These values and regular expressions correspond to each other as illustrated
in the following table:

Regular Expressions

r ::= 0
| 1
| c

| r1 · r2

| r1 + r2

| r∗

Values

v ::=
Empty

| Char(c)
| Seq v1 v2

| Left(v)
| Right(v)
| Stars [v1, . . . vn]

No value corresponds to 0; Empty corresponds to 1; Char to the character regular expression;
Seq to the sequence regular expression and so on. The idea of values is to encode a kind of
lexical value for how the sub-parts of a regular expression match the sub-parts of a string.
To see this, suppose a flatten operation, written |v| for values. We can use this function to

Chengsong Tan 5

extract the underlying string of a value v. For example, |Seq (Char x) (Char y)| is the string
xy. Using flatten, we can describe how values encode lexical values: Seq v1 v2 encodes a tree
with two children nodes that tells how the string |v1|@|v2| matches the regex r1 · r2 whereby
r1 matches the substring |v1| and, respectively, r2 matches the substring |v2|. Exactly how
these two are matched is contained in the children nodes v1 and v2 of parent Seq.

To give a concrete example of how values work, consider the string xy and the regular
expression (x + (y + xy))∗. We can view this regular expression as a tree and if the string
xy is matched by two Star “iterations”, then the x is matched by the left-most alternative
in this tree and the y by the right-left alternative. This suggests to record this matching as

Stars [Left (Char x), Right(Left(Char y))]

where Stars [. . .] records all the iterations; and Left, respectively Right, which alternative is
used. The value for matching xy in a single “iteration”, i.e. the POSIX value, would look
as follows

Stars [Seq (Char x) (Char y)]

where Stars has only a single-element list for the single iteration and Seq indicates that xy

is matched by a sequence regular expression.
The contribution of Sulzmann and Lu is an extension of Brzozowski’s algorithm by

a second phase (the first phase being building successive derivatives—see (??)). In this
second phase, a POSIX value is generated in case the regular expression matches the string.
Pictorially, the Sulzmann and Lu algorithm is as follows:

r0 r1 r2 rn

v0 v1 v2 vn

\c0 \c1

mkeps

injr0 c0 injr1 c1

(2)

For convenience, we shall employ the following notations: the regular expression we start
with is r0, and the given string s is composed of characters c0c1 . . . cn−1. In the first phase
from the left to right, we build the derivatives r1, r2, . . . according to the characters c0, c1
until we exhaust the string and obtain the derivative rn. We test whether this derivative
is nullable or not. If not, we know the string does not match r and no value needs to be
generated. If yes, we start building the values incrementally by injecting back the characters
into the earlier values vn, . . . , v0. This is the second phase of the algorithm from the right to
left. For the first value vn, we call the function mkeps, which builds the lexical value for how
the empty string has been matched by the (nullable) regular expression rn. This function
is defined as

mkeps(1) def= Empty
mkeps(r1 + r2) def= if nullable(r1)

then Left(mkeps(r1))
else Right(mkeps(r2))

mkeps(r1 · r2) def= Seq (mkeps r1) (mkeps r2)
mkeps(r∗) def= Stars []

There are no cases for 0 and c, since these regular expression cannot match the empty string.
Note also that in case of alternatives we give preference to the regular expression on the
left-hand side. This will become important later on about what value is calculated.

6 POSIX Regular Expression Matching and Lexing

After the mkeps-call, we inject back the characters one by one in order to build the lexical
value vi for how the regex ri matches the string si (si = ci . . . cn−1) from the previous lexical
value vi+1. After injecting back n characters, we get the lexical value for how r0 matches s.
For this Sulzmann and Lu defined a function that reverses the “chopping off” of characters
during the derivative phase. The corresponding function is called injection, written inj; it
takes three arguments: the first one is a regular expression ri−1, before the character is
chopped off, the second is a character ci−1, the character we want to inject and the third
argument is the value vi, into which one wants to inject the character (it corresponds to the
regular expression after the character has been chopped off). The result of this function is
a new value. The definition of inj is as follows:

inj (c) c Empty
def= Char c

inj (r1 + r2) c Left(v) def= Left(inj r1 c v)
inj (r1 + r2) c Right(v) def= Right(inj r2 c v)
inj (r1 · r2) c Seq(v1, v2) def= Seq(inj r1 c v1, v2)
inj (r1 · r2) c Left(Seq(v1, v2)) def= Seq(inj r1 c v1, v2)
inj (r1 · r2) c Right(v) def= Seq(mkeps(r1), inj r2 c v)
inj (r∗) c Seq(v, Stars vs) def= Stars((inj r c v) :: vs)

This definition is by recursion on the “shape” of regular expressions and values. To under-
stands this definition better consider the situation when we build the derivative on regular
expression ri−1. For this we chop off a character from ri−1 to form ri. This leaves a “hole”
in ri and its corresponding value vi. To calculate vi−1, we need to locate where that hole is
and fill it. We can find this location by comparing ri−1 and vi. For instance, if ri−1 is of
shape ra · rb, and vi is of shape Left(Seq(v1, v2)), we know immediately that

(ra · rb)\c = (ra\c) · rb + rb\c,

otherwise if ra is not nullable,

(ra · rb)\c = (ra\c) · rb,

the value vi should be Seq(. . .), contradicting the fact that vi is actually of shape Left(. . .).
Furthermore, since vi is of shape Left(. . .) instead of Right(. . .), we know that the left branch
of

(ra · rb)\c = (ra\c) · rb + rb\c,

(underlined) is taken instead of the right one. This means c is chopped off from ra rather
than rb. We have therefore found out that the hole will be on ra. So we recursively call
inj ra c va to fill that hole in va. After injection, the value vi for ri = ra · rb should be
Seq (inj ra c va) vb. Other clauses can be understood in a similar way.

The following example gives an insight of inj’s effect and how Sulzmann and Lu’s al-
gorithm works as a whole. Suppose we have a regular expression ((((a+b)+ab)+c)+abc)∗,
and want to match it against the string abc (when abc is written as a regular expression, the
standard way of expressing it is a · (b · c). But we usually omit the parentheses and dots here
for better readability. This algorithm returns a POSIX value, which means it will produce
the longest matching. Consequently, it matches the string abc in one star iteration, using the
longest alternative abc in the sub-expression (we shall use r to denote this sub-expression
for conciseness):

Chengsong Tan 7

((((a + b) + ab) + c) + abc︸︷︷︸
r

)

Before inj is called, our lexer first builds derivative using string abc (we simplified some
regular expressions like 0 · b to 0 for conciseness; we also omit parentheses if they are clear
from the context):

r∗
\a−→ r1 = (1 + 0 + 1 · b + 0 + 1 · b · c) · r∗
\b−→ r2 = (0 + 0 + 1 · 1 + 0 + 1 · 1 · c) · r∗ + (0 + 1 + 0 + 0 + 0) · r∗
\c−→ r3 = ((0 + 0 + 0 + 0 + 1 · 1 · 1) · r∗ + (0 + 0 + 0 + 1 + 0) · r∗)+

((0 + 1 + 0 + 0 + 0) · r∗ + (0 + 0 + 0 + 1 + 0) · r∗)

In case r3 is nullable, we can call mkeps to construct a lexical value for how r3 matched the
string abc. This function gives the following value v3:

Left(Left(Seq(Right(Seq(Empty, Seq(Empty, Empty))), Stars[])))

The outer Left(Left(. . .)) tells us the leftmost nullable part of r3(underlined):(
(0 + 0 + 0 + 0 + 1 · 1 · 1) · r∗ + (0 + 0 + 0 + 1 + 0) · r∗

)
+
(
(0 + 1 + 0 + 0 + 0) · r∗ + (0 + 0 + 0 + 1 + 0) · r∗

)
Note that the leftmost location of term (0 + 0 + 0 + 0 + 1 · 1 · 1) · r∗ (which corresponds
to the initial sub-match abc) allows mkeps to pick it up because mkeps is defined to always
choose the left one when it is nullable. In the case of this example, abc is preferred over a

or ab. This Left(Left(. . .)) location is generated by two applications of the splitting clause

(r1 · r2)\c (when r1 nullable) = (r1\c) · r2 + r2\c.

By this clause, we put r1\c · r2 at the front and r2\c at the back. This allows mkeps to
always pick up among two matches the one with a longer initial sub-match. Removing the
outside Left(Left(...)), the inside sub-value

Seq(Right(Seq(Empty, Seq(Empty, Empty))), Stars[])

tells us how the empty string [] is matched with (0 + 0 + 0 + 0 + 1 · 1 · 1) · r∗. We match
[] by a sequence of two nullable regular expressions. The first one is an alternative, we take
the rightmost alternative—whose language contains the empty string. The second nullable
regular expression is a Kleene star. Stars tells us how it generates the nullable regular
expression: by 0 iterations to form 1. Now inj injects characters back and incrementally
builds a lexical value based on v3. Using the value v3, the character c, and the regular
expression r2, we can recover how r2 matched the string [c] : inj r2 c v3 gives us

v2 = Left(Seq(Right(Seq(Empty, Seq(Empty, c))), Stars[])),

which tells us how r2 matched [c]. After this we inject back the character b, and get

v1 = Seq(Right(Seq(Empty, Seq(b, c))), Stars[])

for how

r1 = (1 + 0 + 1 · b + 0 + 1 · b · c) · r∗

8 POSIX Regular Expression Matching and Lexing

matched the string bc before it split into two substrings. Finally, after injecting character a

back to v1, we get the lexical value tree

v0 = Stars[Right(Seq(a, Seq(b, c)))]

for how r matched abc. This completes the algorithm.
Readers might have noticed that the lexical value information is actually already available

when doing derivatives. For example, immediately after the operation \a we know that if
we want to match a string that starts with a, we can either take the initial match to be

1) just a or
2) string ab or
3) string abc.

In order to differentiate between these choices, we just need to remember their positions—a

is on the left, ab is in the middle , and abc is on the right. Which of these alternatives is
chosen later does not affect their relative position because the algorithm does not change
this order. If this parsing information can be determined and does not change because of
later derivatives, there is no point in traversing this information twice. This leads to an
optimisation—if we store the information for lexical values inside the regular expression,
update it when we do derivative on them, and collect the information when finished with
derivatives and call mkeps for deciding which branch is POSIX, we can generate the lexical
value in one pass, instead of doing the rest n injections. This leads to Sulzmann and Lu’s
novel idea of using bitcodes in derivatives.

In the next section, we shall focus on the bitcoded algorithm and the process of sim-
plification of regular expressions. This is needed in order to obtain fast versions of the
Brzozowski’s, and Sulzmann and Lu’s algorithms. This is where the PhD-project aims to
advance the state-of-the-art.

4 Simplification of Regular Expressions

Using bitcodes to guide parsing is not a novel idea. It was applied to context free gram-
mars and then adapted by Henglein and Nielson for efficient regular expression lexing using
DFAs [?]. Sulzmann and Lu took this idea of bitcodes a step further by integrating bitcodes
into derivatives. The reason why we want to use bitcodes in this project is that we want to
introduce more aggressive simplification rules in order to keep the size of derivatives small
throughout. This is because the main drawback of building successive derivatives according
to Brzozowski’s definition is that they can grow very quickly in size. This is mainly due to
the fact that the derivative operation generates often “useless” 0s and 1s in derivatives. As
a result, if implemented naively both algorithms by Brzozowski and by Sulzmann and Lu
are excruciatingly slow. For example when starting with the regular expression (a + aa)∗
and building 12 successive derivatives w.r.t. the character a, one obtains a derivative regular
expression with more than 8000 nodes (when viewed as a tree). Operations like der and
nullable need to traverse such trees and consequently the bigger the size of the derivative
the slower the algorithm.

Fortunately, one can simplify regular expressions after each derivative step. Various
simplifications of regular expressions are possible, such as the simplification of 0 + r, r + 0,
1 · r, r · 1, and r + r to just r. These simplifications do not affect the answer for whether
a regular expression matches a string or not, but fortunately also do not affect the POSIX

Chengsong Tan 9

strategy of how regular expressions match strings—although the latter is much harder to
establish. Some initial results in this regard have been obtained in [?].

Unfortunately, the simplification rules outlined above are not sufficient to prevent a
size explosion in all cases. We believe a tighter bound can be achieved that prevents an
explosion in all cases. Such a tighter bound is suggested by work of Antimirov who proved
that (partial) derivatives can be bound by the number of characters contained in the initial
regular expression [?]. He defined the partial derivatives of regular expressions as follows:

pder c 0 def= ∅
pder c 1 def= ∅
pder c d

def= if c = d {1} else ∅
pder c r1 + r2

def= pder c r1 ∪ pder c r2

pder c r1 · r2
def= if nullable r1

then {r · r2 | r ∈ pder c r1} ∪ pder c r2

else {r · r2 | r ∈ pder c r1}
pder c r∗

def= {r′ · r∗ | r′ ∈ pder c r}

A partial derivative of a regular expression r is essentially a set of regular expressions that
are either r’s children expressions or a concatenation of them. Antimirov has proved a tight
bound of the sum of the size of all partial derivatives no matter what the string looks like.
Roughly speaking the size sum will be at most cubic in the size of the regular expression.

If we want the size of derivatives in Sulzmann and Lu’s algorithm to stay below this
bound, we would need more aggressive simplifications. Essentially we need to delete useless
0s and 1s, as well as deleting duplicates whenever possible. For example, the parentheses in
(a + b) · c + bc can be opened up to get a · c + b · c + b · c, and then simplified to just a · c + b · c.
Another example is simplifying (a∗+ a) + (a∗+ 1) + (a + 1) to just a∗+ a + 1. Adding these
more aggressive simplification rules helps us to achieve the same size bound as that of the
partial derivatives.

In order to implement the idea of “spilling out alternatives” and to make them compatible
with the inj-mechanism, we use bitcodes. Bits and bitcodes (lists of bits) are just:

b ::= S | Z bs ::= [] | b : bs

The S and Z are arbitrary names for the bits in order to avoid confusion with the regular
expressions 0 and 1. Bitcodes (or bit-lists) can be used to encode values (or incomplete
values) in a compact form. This can be straightforwardly seen in the following coding
function from values to bitcodes:

code(Empty) def= []
code(Char c) def= []
code(Left v) def= Z :: code(v)
code(Right v) def= S :: code(v)
code(Seq v1 v2) def= code(v1) @ code(v2)
code(Stars []) def= [Z]
code(Stars (v ::vs)) def= S :: code(v) @ code(Stars vs)

Here code encodes a value into a bitcodes by converting Left into Z , Right into S , the start
point of a non-empty star iteration into S , and the border where a local star terminates
into Z . This coding is lossy, as it throws away the information about characters, and also

10 POSIX Regular Expression Matching and Lexing

does not encode the “boundary” between two sequence values. Moreover, with only the
bitcode we cannot even tell whether the Ss and Z s are for Left/Right or Stars. The reason
for choosing this compact way of storing information is that the relatively small size of bits
can be easily manipulated and “moved around” in a regular expression. In order to recover
values, we will need the corresponding regular expression as an extra information. This
means the decoding function is defined as:

decode′ bs (1) def= (Empty, bs)
decode′ bs (c) def= (Char c, bs)
decode′ (Z ::bs) (r1 + r2) def= let (v, bs1) = decode′ bs r1 in (Left v, bs1)
decode′ (S ::bs) (r1 + r2) def= let (v, bs1) = decode′ bs r2 in (Right v, bs1)
decode′ bs (r1 · r2) def= let (v1, bs1) = decode′ bs r1 in

let (v2, bs2) = decode′ bs1 r2

in (Seq v1 v2, bs2)
decode′ (Z ::bs) (r∗) def= (Stars [], bs)
decode′ (S ::bs) (r∗) def= let (v, bs1) = decode′ bs r in

let (Stars vs, bs2) = decode′ bs1 r∗

in (Stars v ::vs, bs2)

decode bs r
def= let (v, bs′) = decode′ bs r in

if bs′ = [] then Some v else None

Sulzmann and Lu’s integrated the bitcodes into regular expressions to create annotated
regular expressions [?]. Annotated regular expressions are defined by the following grammar:

a ::= ZERO
| ONE bs

| CHAR bs c

| ALTS bs as

| SEQ bs a1 a2

| STAR bs a

where bs stands for bitcodes, a for annotated regular expressions and as for a list of annot-
ated regular expressions. The alternative constructor(ALTS) has been generalized to accept
a list of annotated regular expressions rather than just 2. We will show that these bitcodes
encode information about the (POSIX) value that should be generated by the Sulzmann
and Lu algorithm.

To do lexing using annotated regular expressions, we shall first transform the usual (un-
annotated) regular expressions into annotated regular expressions. This operation is called
internalisation and defined as follows:

(0)↑ def= ZERO
(1)↑ def= ONE []
(c)↑ def= CHAR [] c

(r1 + r2)↑ def= ALTS [] List((fuse [Z] r↑1), (fuse [S] r↑2))
(r1 · r2)↑ def= SEQ [] r↑1 r↑2

(r∗)↑ def= STAR [] r↑

Chengsong Tan 11

We use up arrows here to indicate that the basic un-annotated regular expressions are “lifted
up” into something slightly more complex. In the fourth clause, fuse is an auxiliary function
that helps to attach bits to the front of an annotated regular expression. Its definition is as
follows:

fuse bs (ZERO) def= ZERO
fuse bs (ONE bs′) def= ONE (bs @ bs′)
fuse bs (CHAR bs′ c) def= CHAR (bs @ bs′) c

fuse bs (ALTS bs′ as) def= ALTS (bs @ bs′) as

fuse bs (SEQ bs′ a1 a2) def= SEQ (bs @ bs′) a1 a2

fuse bs (STAR bs′ a) def= STAR (bs @ bs′) a

After internalising the regular expression, we perform successive derivative operations on
the annotated regular expressions. This derivative operation is the same as what we had
previously for the basic regular expressions, except that we beed to take care of the bitcodes:

(ZERO) \c def= ZERO
(ONE bs) \c def= ZERO
(CHAR bs d) \c def= if c = d then ONE bs else ZERO
(ALTS bs as) \c def= ALTS bs (as.map(\c))
(SEQ bs a1 a2) \c def= if bnullable a1

then ALTS bs List((SEQ [] (a1 \c) a2),
(fuse (bmkeps a1) (a2 \c)))

else SEQ bs (a1 \c) a2

(STAR bs a) \c def= SEQ bs (fuse [Z](r \c)) (STAR [] r)

For instance, when we unfold STAR bs a into a sequence, we need to attach an additional bit
Z to the front of r\c to indicate that there is one more star iteration. Also the SEQ clause
is more subtle—when a1 is bnullable (here bnullable is exactly the same as nullable, except
that it is for annotated regular expressions, therefore we omit the definition). Assume that
bmkeps correctly extracts the bitcode for how a1 matches the string prior to character c

(more on this later), then the right branch of ALTS, which is fuse bmkeps a1(a2\c) will
collapse the regular expression a1(as it has already been fully matched) and store the parsing
information at the head of the regular expression a2\c by fusing to it. The bitsequence bs,
which was initially attached to the head of SEQ, has now been elevated to the top-level of
ALTS, as this information will be needed whichever way the SEQ is matched—no matter
whether c belongs to a1 or a2. After building these derivatives and maintaining all the lexing
information, we complete the lexing by collecting the bitcodes using a generalised version of
the mkeps function for annotated regular expressions, called bmkeps:

bmkeps (ONE bs) def= bs

bmkeps (ALTS bs a :: as) def= if bnullable a

then bs @ bmkeps a

else bs @ bmkeps (ALTS bs as)
bmkeps (SEQ bs a1 a2) def= bs @ bmkeps a1 @ bmkeps a2

bmkeps (STAR bs a) def= bs @ [S]

This function completes the value information by travelling along the path of the regular
expression that corresponds to a POSIX value and collecting all the bitcodes, and using S to

12 POSIX Regular Expression Matching and Lexing

indicate the end of star iterations. If we take the bitcodes produced by bmkeps and decode
them, we get the value we expect. The corresponding lexing algorithm looks as follows:

blexer r s
def= let a = (r↑)\s in

if bnullable(a)
then decode (bmkeps a) r

else None

In this definition _\s is the generalisation of the derivative operation from characters to
strings (just like the derivatives for un-annotated regular expressions).

The main point of the bitcodes and annotated regular expressions is that we can apply
rather aggressive (in terms of size) simplification rules in order to keep derivatives small. We
have developed such “aggressive” simplification rules and generated test data that show that
the expected bound can be achieved. Obviously we could only partially cover the search
space as there are infinitely many regular expressions and strings.

One modification we introduced is to allow a list of annotated regular expressions in the
ALTS constructor. This allows us to not just delete unnecessary 0s and 1s from regular
expressions, but also unnecessary “copies” of regular expressions (very similar to simplify-
ing r + r to just r, but in a more general setting). Another modification is that we use
simplification rules inspired by Antimirov’s work on partial derivatives. They maintain the
idea that only the first “copy” of a regular expression in an alternative contributes to the
calculation of a POSIX value. All subsequent copies can be pruned away from the regular
expression. A recursive definition of our simplification function that looks somewhat similar
to our Scala code is given below:

simp (SEQ bs a1 a2) def= (simp a1, simp a2) match
case (0, _)⇒ 0
case (_, 0)⇒ 0
case (1, a′2)⇒ fuse bs a′2

case (a′1, 1)⇒ fuse bs a′1

case (a′1, a′2)⇒ SEQ bs a′1 a′2

simp (ALTS bs as) def= distinct(flatten(map simp as)) match
case []⇒ 0
case a :: []⇒ fuse bs a
case as′ ⇒ ALTS bs as′

simp a
def= a otherwise

The simplification does a pattern matching on the regular expression. When it detected
that the regular expression is an alternative or sequence, it will try to simplify its children
regular expressions recursively and then see if one of the children turn into 0 or 1, which
might trigger further simplification at the current level. The most involved part is the ALTS
clause, where we use two auxiliary functions flatten and distinct to open up nested ALTS
and reduce as many duplicates as possible. Function distinct keeps the first occurring copy
only and remove all later ones when detected duplicates. Function flatten opens up nested
ALTS. Its recursive definition is given below:

flatten (ALTS bs as) :: as′
def= (map (fuse bs) as) @ flatten as′

flatten ZERO :: as′
def= flatten as′

flatten a :: as′
def= a :: flatten as′ (otherwise)

Chengsong Tan 13

Here flatten behaves like the traditional functional programming flatten function, except
that it also removes 0s. Or in terms of regular expressions, it removes parentheses, for
example changing a + (b + c) into a + b + c.

Suppose we apply simplification after each derivative step, and view these two operations
as an atomic one: a\simp c

def= simp(a\c). Then we can use the previous natural extension
from derivative w.r.t. character to derivative w.r.t. string:

r\simp(c ::s) def= (r\simp c)\simp s

r\simp[] def= r

we obtain an optimised version of the algorithm:

blexer_simp r s
def= let a = (r↑)\simp s in

if bnullable(a)
then decode (bmkeps a) r

else None

This algorithm keeps the regular expression size small, for example, with this simplification
our previous (a + aa)∗ example’s 8000 nodes will be reduced to just 6 and stays constant,
no matter how long the input string is.

5 Current Work

We are currently engaged in two tasks related to this algorithm. The first task is proving
that our simplification rules actually do not affect the POSIX value that should be generated
by the algorithm according to the specification of a POSIX value and furthermore obtain a
much tighter bound on the sizes of derivatives. The result is that our algorithm should be
correct and faster on all inputs. The original blow-up, as observed in JavaScript, Python and
Java, would be excluded from happening in our algorithm. For this proof we use the theorem
prover Isabelle. Once completed, this result will advance the state-of-the-art: Sulzmann and
Lu wrote in their paper [?] about the bitcoded “incremental parsing method” (that is the
lexing algorithm outlined in this section):

“Correctness Claim: We further claim that the incremental parsing method in Fig-
ure 5 in combination with the simplification steps in Figure 6 yields POSIX parse
tree [our lexical values]. We have tested this claim extensively by using the method in
Figure 3 as a reference but yet have to work out all proof details.”

We like to settle this correctness claim. It is relatively straightforward to establish that after
one simplification step, the part of a nullable derivative that corresponds to a POSIX value
remains intact and can still be collected, in other words, we can show that

bmkeps a = bmkeps bsimp a (provided a is bnullable)

as this basically comes down to proving actions like removing the additional r in r + r does
not delete important POSIX information in a regular expression. The hard part of this proof
is to establish that

blexer_simp(r, s) = blexer(r, s)

14 POSIX Regular Expression Matching and Lexing

That is, if we do derivative on regular expression r and then simplify it, and repeat this
process until we exhaust the string, we get a regular expression r′′(LHS) that provides the
POSIX matching information, which is exactly the same as the result r′(RHS of the normal
derivative algorithm that only does derivative repeatedly and has no simplification at all.
This might seem at first glance very unintuitive, as the r′ could be exponentially larger than
r′′, but can be explained in the following way: we are pruning away the possible matches
that are not POSIX. Since there could be exponentially many non-POSIX matchings and
only 1 POSIX matching, it is understandable that our r′′ can be a lot smaller. we can still
provide the same POSIX value if there is one. This is not as straightforward as the previous
proposition, as the two regular expressions r′ and r′′ might have become very different. The
crucial point is to find the POSIX information of a regular expression and how it is modified,
augmented and propagated during simplification in parallel with the regular expression that
has not been simplified in the subsequent derivative operations. To aid this, we use the
helper function retrieve described by Sulzmann and Lu:

retrieve (ONE bs) Empty def= bs

retrieve (CHAR bs c) (Char d) def= bs

retrieve (ALTS bs a :: as) (Left v) def= bs @ retrieve a v

retrieve (ALTS bs a :: as) (Right v) def= bs @ retrieve (ALTS bs as) v

retrieve (SEQ bs a1 a2) (Seq v1 v2) def= bs @ retrieve a1 v1 @ retrieve a2 v2

retrieve (STAR bs a) (Stars []) def= bs @ [S]
retrieve (STAR bs a) (Stars (v ::vs)) def=

bs @ [Z] @ retrieve a v @ retrieve (STAR [] a) (Stars vs)

This function assembles the bitcode using information from both the derivative regular
expression and the value. Sulzmann and Lu poroposed this function, but did not prove
anything about it. Ausaf and Urban used it to connect the bitcoded algorithm to the older
algorithm by the following equation:

inj a c v = decode (retrieve (r↑)\simp c) v)

whereby r↑ stands for the internalised version of r. Ausaf and Urban also used this fact to
prove the correctness of bitcoded algorithm without simplification. Our purpose of using
this, however, is to establish

retrieve a v = retrieve (simp a) v′.

The idea is that using v′, a simplified version of v that had gone through the same sim-
plification step as simp(a), we are able to extract the bitcode that gives the same parsing
information as the unsimplified one. However, we noticed that constructing such a v′ from
v is not so straightforward. The point of this is that we might be able to finally bridge the
gap by proving

retrieve (r↑\s) v = retrieve (simp(r↑)\s) v′

and subsequently

retrieve (r↑\s) v = retrieve (r↑\simp s) v′.

Chengsong Tan 15

The LHS of the above equation is the bitcode we want. This would prove that our simplified
version of regular expression still contains all the bitcodes needed. The task here is to find
a way to compute the correct v′.

The second task is to speed up the more aggressive simplification. Currently it is slower
than the original naive simplification by Ausaf and Urban (the naive version as implemented
by Ausaf and Urban of course can “explode” in some cases). It is therefore not surprising
that the speed is also much slower than regular expression engines in popular programming
languages such as Java and Python on most inputs that are linear. For example, just by
rewriting the example regular expression in the beginning of this report (a∗)∗ b into a∗ b

would eliminate the ambiguity in the matching and make the time for matching linear with
respect to the input string size. This allows the DFA approach to become blindingly fast,
and dwarf the speed of our current implementation. For example, here is a comparison of
Java regex engine and our implementation on this example.

5 10 15 20 25 30

2
4
6
8

n ∗ 1000

tim
e

in
se

cs Bitcoded Algorithm

5 10 15 20 25 30
0
2
4
6
8

n ∗ 1000

Java

Graphs: Runtime for matching a∗ b with strings of the form aa..a︸︷︷︸
n

.

Java regex engine can match string of thousands of characters in a few milliseconds,
whereas our current algorithm gets excruciatingly slow on input of this size. The running
time in theory is linear, however it does not appear to be the case in an actual implement-
ation. So it needs to be explored how to make our algorithm faster on all inputs. It could
be the recursive calls that are needed to manipulate bits that are causing the slow down. A
possible solution is to write recursive functions into tail-recusive form. Another possibility
would be to explore again the connection to DFAs to speed up the algorithm on subcalls
that are small enough. This is very much work in progress.

6 Conclusion

In this PhD-project we are interested in fast algorithms for regular expression matching.
While this seems to be a “settled” area, in fact interesting research questions are popping
up as soon as one steps outside the classic automata theory (for example in terms of what
kind of regular expressions are supported). The reason why it is interesting for us to look
at the derivative approach introduced by Brzozowski for regular expression matching, and
then much further developed by Sulzmann and Lu, is that derivatives can elegantly deal
with some of the regular expressions that are of interest in “real life”. This includes the
not-regular expression, written ¬ r (that is all strings that are not recognised by r), but
also bounded regular expressions such as r{n} and r{n..m}). There is also hope that the
derivatives can provide another angle for how to deal more efficiently with back-references,
which are one of the reasons why regular expression engines in JavaScript, Python and Java
choose to not implement the classic automata approach of transforming regular expressions
into NFAs and then DFAs—because we simply do not know how such back-references can be
represented by DFAs. We also plan to implement the bitcoded algorithm in some imperative

16 POSIX Regular Expression Matching and Lexing

language like C to see if the inefficiency of the Scala implementation is language specific.
To make this research more comprehensive we also plan to contrast our (faster) version of
bitcoded algorithm with the Symbolic Regex Matcher, the RE2, the Rust Regex Engine, and
the static analysis approach by implementing them in the same language and then compare
their performance.

References
1 V. Antimirov. Partial Derivatives of Regular Expressions and Finite Automata Construc-

tions. Theoretical Computer Science, 155:291–319, 1995.
2 F. Ausaf, R. Dyckhoff, and C. Urban. POSIX Lexing with Derivatives of Regular Expres-

sions (Proof Pearl). In Proc. of the 7th International Conference on Interactive Theorem
Proving (ITP), volume 9807 of LNCS, pages 69–86, 2016.

3 J. A. Brzozowski. Derivatives of Regular Expressions. Journal of the ACM, 11(4):481–494,
1964.

4 J. C. Davis, C. .A. Coghlan, F. Servant, and D. Lee. The Impact of Regular Expres-
sion Denial of Service (ReDoS) in Practice: An Empirical Study at the Ecosystem Scale.
In Proc. of the 26th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE), pages 246–256,
2018.

5 N. B. B. Grathwohl, F. Henglein, and U. T. Rasmussen. A Crash-Course in Regular
Expression Parsing and Regular Expressions as Types. Technical report, University of
Copenhagen, 2014.

6 C. Kuklewicz. Regex Posix. https://wiki.haskell.org/Regex_Posix.
7 Fritz Henglein Lasse Nielsen. Bit-coded regular expression parsing. LATA, 2011.
8 S. Okui and T. Suzuki. Disambiguation in Regular Expression Matching via Position

Automata with Augmented Transitions. In Proc. of the 15th International Conference
on Implementation and Application of Automata (CIAA), volume 6482 of LNCS, pages
231–240, 2010.

9 Asiri Rathnayake and Hayo Thielecke. Static analysis for regular expression exponential
runtime via substructural logics. arXiv:1405.7058, 2017.

10 M. Sulzmann and K. Lu. POSIX Regular Expression Parsing with Derivatives. In Proc. of
the 12th International Conference on Functional and Logic Programming (FLOPS), volume
8475 of LNCS, pages 203–220, 2014.

11 S. Vansummeren. Type Inference for Unique Pattern Matching. ACM Transactions on
Programming Languages and Systems, 28(3):389–428, 2006.

https://wiki.haskell.org/Regex_Posix

