
This is a sketch proof for the correctness of the algorithm ders simp.

1 Function Definitions

Definition 1. Bits

abstract class Bit

case object Z extends Bit

case object S extends Bit

case class C(c: Char) extends Bit

type Bits = List[Bit]

Definition 2. Annotated Regular Expressions

abstract class ARexp

case object AZERO extends ARexp

case class AONE(bs: Bits) extends ARexp

case class ACHAR(bs: Bits, f: Char) extends ARexp

case class AALTS(bs: Bits, rs: List[ARexp]) extends ARexp

case class ASEQ(bs: Bits, r1: ARexp, r2: ARexp) extends ARexp

case class ASTAR(bs: Bits, r: ARexp) extends ARexp

Definition 3. bnullable

def bnullable (r: ARexp) : Boolean = r match {

case AZERO => false

case AONE(_) => true

case ACHAR(_,_) => false

case AALTS(_, rs) => rs.exists(bnullable)

case ASEQ(_, r1, r2) => bnullable(r1) && bnullable(r2)

case ASTAR(_, _) => true

}

Definition 4. ders simp

def ders_simp(r: ARexp, s: List[Char]): ARexp = {

s match {

case Nil => r

case c::cs => ders_simp(bsimp(bder(c, r)), cs)

}

}

Definition 5. bder

def bder(c: Char, r: ARexp) : ARexp = r match {

case AZERO => AZERO

case AONE(_) => AZERO

case ACHAR(bs, f) => if (c == f) AONE(bs:::List(C(c))) else AZERO

case AALTS(bs, rs) => AALTS(bs, rs.map(bder(c, _)))

case ASEQ(bs, r1, r2) => {

if (bnullable(r1)) AALT(bs, ASEQ(Nil, bder(c, r1), r2), fuse(mkepsBC(r1), bder(c, r2)))

else ASEQ(bs, bder(c, r1), r2)

}

case ASTAR(bs, r) => ASEQ(bs, fuse(List(S), bder(c, r)), ASTAR(Nil, r))

}

Definition 6. bsimp

def bsimp(r: ARexp): ARexp = r match {

case ASEQ(bs1, r1, r2) => (bsimp(r1), bsimp(r2)) match {

case (AZERO, _) => AZERO

case (_, AZERO) => AZERO

case (AONE(bs2), r2s) => fuse(bs1 ++ bs2, r2s)

1

case (r1s, r2s) => ASEQ(bs1, r1s, r2s)

}

case AALTS(bs1, rs) => {

val rs_simp = rs.map(bsimp)

val flat_res = flats(rs_simp)

val dist_res = distinctBy(flat_res, erase)

dist_res match {

case Nil => AZERO

case s :: Nil => fuse(bs1, s)

case rs => AALTS(bs1, rs)

}

}

//case ASTAR(bs, r) => ASTAR(bs, bsimp(r))

case r => r

}

Definition 7. sub-parts of bsimp

• flats
flattens the list.

• dB
means distinctBy

• Co
The last matching clause of the function bsimp, with a slight modification to suit later reasoning.

def Co(bs1, rs): ARexp = {

rs match {

case Nil => AZERO

case s :: Nil => fuse(bs1, s)

case rs => AALTS(bs1, rs)

}

Definition 8. fuse

def fuse(bs: Bits, r: ARexp) : ARexp = r match {

case AZERO => AZERO

case AONE(cs) => AONE(bs ++ cs)

case ACHAR(cs, f) => ACHAR(bs ++ cs, f)

case AALTS(cs, rs) => AALTS(bs ++ cs, rs)

case ASEQ(cs, r1, r2) => ASEQ(bs ++ cs, r1, r2)

case ASTAR(cs, r) => ASTAR(bs ++ cs, r)

}

Definition 9. mkepsBC

def mkepsBC(r: ARexp) : Bits = r match {

case AONE(bs) => bs

case AALTS(bs, rs) => {

val n = rs.indexWhere(bnullable)

bs ++ mkepsBC(rs(n))

}

case ASEQ(bs, r1, r2) => bs ++ mkepsBC(r1) ++ mkepsBC(r2)

case ASTAR(bs, r) => bs ++ List(Z)

}

Definition 10. mkepsBC equicalence
Given 2 nullable annotated regular expressions r1, r2, if mkepsBC(r1) == mkepsBC(r2) then r1 and r2 are mkepsBC
equivalent, denoted as r1 ∼mε r2

Definition 11. shorthand notation for ders
For the sake of reducing verbosity, we sometimes use the shorthand notation dc(r) for the function application bder(c, r) and

2

s(r)(s here stands for simplification) for the function application bsimp(r) .
We omit the subscript when it is clear from context what that character is and write d(r) instead of dc(r).
And we omit the parentheses when no confusion can be caused. For example ders simp(c, r) can be written as s(dc(r)) or
even sdr as we know the derivative operation is w.r.t the character c. Here the s and d are more like operators that take an
annotated regular expression as an input and return an annotated regular expression as an output

Definition 12. distinctBy operation expressed in a different way–how it transforms the list
Given two lists rs1 and rs2, we define the operation −−:
rs1−−rs2 := [r ∈ rs1|r /∈ rs2] Note that the order each term appears in rs1 −−rs2 is preserved as in the original list.

2 Main Result

Lemma 1. simplification function does not simplify an already simplified regex
bsimp(r) == bsimp(bsimp(r)) holds for any annotated regular expression r.

Lemma 2. simp and mkeps
When r is nullable, we have that mkeps(bsimp(r)) == mkeps(r)

Lemma 3. mkeps equivalence w.r.t some syntactically different regular expressions(1 ALTS)
When one of the 2 regular expressions s(r1) and s(r2) is of the form ALTS(bs1, rs1), we have that ds(ALTS(bs, r1, r2)) ∼mε
d(ALTS(bs, sr1, sr2))

Proof. By opening up one of the alts and show no additional changes are made.
Details: ds(ALTS(bs, r1, r2)) = dCo(bs, dB(flats(sr1, sr2)))

Lemma 4. mkepsBC invariant manipulation of bits and notation
ALTS(bs, ALTS(bs1, rs1), ALTS(bs2, rs2)) ∼mε ALTS(bs, rs1.map(fuse(bs1,)) ++ rs2.map(fuse(bs2,))).
We also use bs2 >> rs2 as a shorthand notation for rs2.map(fuse(bs2,)).

Lemma 5. mkepsBC equivalence w.r.t syntactically different regular expressions(2 ALTS)
sr1 = ALTS(bs1, rs1) and sr2 = ALTS(bs2, rs2) we have d(sr1 + sr2) ∼mε d(ALTS(bs, bs1 >> rs1 + +bs2 >> rs2))

Proof. We are just fusing bits inside here, there is no other structural change.

Lemma 6. What does dB do to two already simplified ALTS
dCo(ALTS(bs, dB(bs1 >> rs1 + +bs2 >> rs2))) = dCo(ALTS(bs, bs1 >> rs1 + +((bs2 >> rs2)−−rs1)))

Proof. We prove that dB(bs1 >> rs1 + +bs2 >> rs2) = bs1 >> rs1 + +((bs2 >> rs2)−−rs1).

Lemma 7. after opening two previously simplified alts up into terms, length must exceed 2
If sr1, sr2 are of the form ALTS(bs1, rs1), ALTS(bs2, rs2) respectively, then we have that Co(bs, (bs1 >> rs1) + +(bs2 >>
rs2)−−rs1) = ALTS(bs, bs1 >> rs1 + +(bs2 >> rs2)−−rs1)

Proof. Co(bs, rs) ∼mε ALTS(bs, rs) if rs is a list of length greater than or equal to 2. As suggested by the title of this
lemma, ALTS(bs1, rs1) is a result of simplification, which means that rs1 must be composed of at least 2 distinct regular
terms. This alone says that bs1 >> rs1 + +(bs2 >> rs2)−−rs1 is a list of length greater than or equal to 2, as the second
operand of the concatenation operator (bs2 >> rs2) − −rs1 can only contribute a non-negative value to the overall length
of the list bs1 >> rs1 + +(bs2 >> rs2)−−rs1.

Lemma 8. mkepsBC equivalence w.r.t syntactically different regular expressions(2 ALTS+ some deletion after derivatives)
dALTS(bs, bs1 >> rs1 + +bs2 >> rs2) ∼mε dALTS(bs, bs1 >> rs1 + +((bs2 >> rs2)−−rs1))

Proof. Let’s call bs1 >> rs1 rs1′ and bs2 >> rs2 rs2′. Then we need to prove dALTS(bs, rs1′++rs2′) ∼mε dALTS(bs, rs1′+
+(rs2′ −−rs1′)).
We might as well omit the prime in each rs for simplicty of notation and prove dALTS(bs, rs1++rs2) ∼mε dALTS(bs, rs1+
+(rs2−−rs1)).
We know that the result of derivative is nullable, so there must exist an r in rs1++rs2 s.t. r is nullable.
If r ∈ rs1, then equivalence holds. If r ∈ rs2 ∧ r /∈ rs1, equivalence holds as well. This completes the proof.

Theorem 1. Correctness Result

• When s is a string in the language L(ar),
ders simp(ar, s) ∼mε ders(ar, s),

3

• when s is not a string of the language L(ar) ders simp(ar, s) is not nullable

Proof. Split into 2 parts.

• When we have an annotated regular expression ar and a string s that matches ar, by the correctness of the algorithm
ders, we have that ders(ar, s) is nullable, and that mkepsBC will extract the desired bits for decoding the correct value v
for the matching, and v is a POSIX value. Now we prove that mkepsBC(ders simp(ar, s)) yields the same bitsequence.
We first open up the ders simp function into nested alternating sequences of ders and simp. Assume that s = c1...cn(n ≥
1) where each of the ci are characters. Then ders simp(ar, s) = s(dcn(...s(dc1(r))...)) = sdsd......sdr. If we can prove
that sdr ∼mε dsr holds for any regular expression and any character, then we are done. This is because then we can
push ders operation inside and move simp operation outside and have that sdsd...sdr ∼mε ssddsdsd...sdr ∼mε ... ∼mε
s....sd....dr. Using Lemma 1 we have that s...sd....dr = sd...dr. By Lemma 2, we have RHS ∼mε d...dr.
Notice that we don’t actually need Lemma 1 here. That is because by Lemma 2, we can have that s...sd....dr ∼mε sd...dr.
The equality above can be replaced by mkepsBC equivalence without affecting the validity of the whole proof since all
we want is mkepsBC equivalence, not equality.

Now we proceed to prove that sdr ∼mε dsr. This can be reduced to proving dr ∼mε dsr as we know that dr ∼mε sdr
by Lemma 2.

we use an induction proof. Base cases are omitted. Here are the 3 inductive cases.

– r1 + r2 r1 + r2
The most difficult case is when sr1 and sr2 are both ALTS, so that they will be opened up in the flats function
and some terms in sr2 might be deleted. Or otherwise we can use the argument that d(r1 + r2) = dr1 + dr2 ∼mε
dsr1 +dsr2 ∼mε ds(r1 +r2), the last equivalence being established by Lemma 3. When s(r1), s(r2) are both ALTS,
we have to be more careful for the last equivalence step, namelly, dsr1 + dsr2 ∼mε ds(r1 + r2).
We have that LHS = dsr1 + dsr2 = d(sr1 + sr2). Since sr1 = ALTS(bs1, rs1) and sr2 = ALTS(bs2, rs2) we
have d(sr1 + sr2) ∼mε d(ALTS(bs, bs1 >> rs1 + +bs2 >> rs2)) by Lemma 5. On the other hand, RHS =
ds(ALTS(bs, r1, r2)) = dCo(bs, dB(flats(s(r1), s(r2)))) = dCo(bs, dB(bs1 >> rs1 + +bs2 >> rs2)) by definition
of bsimp and flats.
dCo(bs, dB(bs1 >> rs1 + +bs2 >> rs2)) = dCo(bs, (bs1 >> rs1 + +((bs2 >> rs2)−−rs1))) by Lemma 6.
dCo(bs, (bs1 >> rs1 + +((bs2 >> rs2) − −rs1))) = d(ALTS(bs, bs1 >> rs1 + +(bs2 >> rs2) − −rs1)) by
Lemma 7.
Using Lemma 8, we have d(ALTS(bs, bs1 >> rs1 + +(bs2 >> rs2) − −rs1)) ∼mε d(ALTS(bs, bs1 >> rs1 +
+bs2 >> rs2)) ∼mε RHS.
This completes the proof.

– r∗
s(r*) = s(r).

– r1.r2
using previous.

• Proof of second part of the theorem: use a similar structure of argument as in the first part.

4

	Function Definitions
	Main Result

