diff -r 058133a9ffe0 -r a67aff8fb06a big_lemma.tex --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/big_lemma.tex Mon Jul 22 22:30:47 2019 +0100 @@ -0,0 +1,71 @@ +\documentclass{article} +\usepackage[utf8]{inputenc} +\usepackage[english]{babel} +\usepackage{listings} + \usepackage{amsthm} + \usepackage{hyperref} + \usepackage[margin=1in]{geometry} +\usepackage{pmboxdraw} + +\theoremstyle{theorem} +\newtheorem{theorem}{Theorem} + +\theoremstyle{lemma} +\newtheorem{lemma}{Lemma} +\usepackage{amsmath} +\newcommand{\lemmaautorefname}{Lemma} + +\theoremstyle{definition} + \newtheorem{definition}{Definition} +\begin{document} + +\section{BIG lemma} \begin{equation}\label{bg} \textit{ bsimp}( \textit{ ALTS}( + bs, \textit{ ALTS}( bs_1, as_1),\textit{ ALTS}( bs2, as_2)))) = + \textit{ bsimp}(\textit{ALTS}( bs, \textit{ map} \; ( \textit{fuse} \; + bs_1) \; as_1 ++ \textit{ map} \; (\textit{fuse} \; bs_2) \; as_2)) +\end{equation} We want to show the $ \textit{ LHS}$ of \eqref{bg} is equal to +the $ \textit{ RHS}$ of \eqref{bg}. We can first write it in a shorter and +more readable form. And that is \begin{equation}\label{sm} s (A ( bs, A ( bs_1, +as_1), A ( bs_2, as_2)))=s(A(bs, (bs_1 \rightarrow as_1) @ (bs_2 \rightarrow +as_2))) \end{equation} Where $s$ means $\textit{bsimp}$ and $A$ stands for +$\textit{ALTS}$. The right arrow denotes the $\textit{map \; fuse}$ operation. +We want to transform both sides into function application of $\textit{bsimp}$ +with its arguments involving regexes of the form $s(as_1)$ and $s(as_2)$, which +can then be expanded by a case-by-case analysis. Each case can then be shown +with ease. We have the following:\\ $\textit{LHS}=\textit{s}(A(bs, A(bs_1, +as_1),A(bs_2, as_2)))=s(A(bs, s(A(bs_1,as_1)), s(A(bs_2,as_2)))).$ \\This is by +a previous lemma. We get "free" $\textit{bsimp}$ on the inner 2 +$\textit{ALTS}$s out of nowhere. And by application of the inner +$\textit{bsimp}$ in the above expression, we have that\\ $s(A(bs, +s(A(bs_1,as_1)), s(A(bs_2,as_2)))) = s(A(bs, Li(A(bs_1, +\textit{flts}(s(as_1)))),Li(A(bs_2, \textit{flts}(s(as_2))) ) )).$\\ Now we +have successfully added $s$ to $as_1$ and $as_2$. Let us transform the +$\textit{RHS}$ of equation \eqref{bg}. \\ $\textit{RHS}=s(s(A(bs, (bs_1 +\rightarrow as_1)@(bs_2 \rightarrow as_2))))=s(Li(A(bs, +\textit{flts}(s(as_1'@as_2'))))).$ \\where the $as_i'$ corresponds to $bs_i +\rightarrow as_i$. \\The right hand side of the above equation can again be +transformed into $s(Li(A(bs, \textit{flts}(s(as_1')@s(as_2'))))).$ \\You might +want to have a lemma for $s(as_1'@as_2')= s(as_1')@s(as_2')$, which is +basically a linearity property of the $\textit{map}$ function. The above +expression can then again be transformed into $s(Li(A(bs, +\textit{flts}(s(as_1'))@\textit{flts}(s(as_2')))).$ You might again want to +have a lemma for this linearity property of $\textit{flats}.$\\ +%The above can be then again transformed into $\$ +We now want to equate $s(Li(A(bs, +\textit{flts}(s(as_1'))@\textit{flts}(s(as_2'))))$ with $s(A(bs, Li(A(bs_1, +\textit{flts}(s(as_1)))),Li(A(bs_2, \textit{flts}(s(as_2))) ) ))$ \\ We just +need to equate the contents inside $\textit{bsimp}$, namely we want to prove\\ +$Li(A(bs, \textit{flts}(s(as_1'))@\textit{flts}(s(as_2'))))$ with $A(bs, +Li(A(bs_1, \textit{flts}(s(as_1)))),Li(A(bs_2, \textit{flts}(s(as_2))) ) ).$ \\ +This shouldn't be surprising, we have added redundant $\textit{bsimp}$, now we +are just removing it. This is where we need a case-by-case analysis. We need +to assume the conditions when $s(as_i')$ is empty list, single element list and +list with 2 or more elements. They are all trivial and therefore ommitted. + +\end{document} + +%The second part might still need some more development. +%When s is not in the set L(ar), we have that s = s1@s2 s.t. s1 $\in$ L(ar), and any longer string that is a prefix of s does not belong to L(ar).\\ +%By first part of proof, we have ders(ar, s1) $\sim_{m\epsilon}$ ders\_simp(ar, s1) +%.....somehow show that by correctness, der(c, ders\_simp(ar, s1)) must be not nullable. But this will need that L(ders(ar, s1)) == L(ders\_simp(ar, s1)). By part 1 of proof we only have that for any string s1c s.t. s1c $\in$ L(ar) (which is equivalent to s $\in$ L(ders(ar, s1))), s is also in L(ders\_simp(ar, s1)). That is an inclusion, not an equality. c not in L(ders(ar, s1)) does not imply c not in L(ders\_simp(ar, s1)) +%So this path stuck here.