import RexpRelated._import RexpRelated.Rexp._import Spiral._import scala.collection.mutable.ArrayBufferabstract class BRexpcase object BZERO extends BRexpcase object BONE extends BRexpcase class BCHAR(c: Char) extends BRexpcase class BALTS(b: Bit, rs: List[BRexp]) extends BRexp case class BSEQ(r1: BRexp, r2: BRexp) extends BRexp case class BSTAR(r: BRexp) extends BRexp object BRexp{ def brternalise(r: Rexp) : BRexp = r match {//remember the initial shadowed bit should be set to Z as there //are no enclosing STAR or SEQ case ZERO => BZERO case ONE => BONE case CHAR(c) => BCHAR(c) case ALTS(rs) => BALTS(Z, rs.map(brternalise)) case SEQ(r1, r2) => BSEQ( brternalise(r1), brternalise(r2) ) case STAR(r) => BSTAR(brternalise(r)) case RECD(x, r) => brternalise(r) } def brnullable (r: BRexp) : Boolean = r match { case BZERO => false case BONE => true case BCHAR(_) => false case BALTS(bs, rs) => rs.exists(brnullable) case BSEQ(r1, r2) => brnullable(r1) && brnullable(r2) case BSTAR(_) => true } //this function tells bspill when converting a brexp into a list of rexps //the conversion : (a+b)*c -> {a*c, b*c} can only happen when a+b is generated from scratch (e.g. when deriving a seq) //or is from the original regex but have been "touched" (i.e. have been derived) //Why make this distinction? Look at the following example: //r = (c+cb)+c(a+b) // r\c = (1+b)+(a+b) //after simplification // (r\c)simp= 1+b+a //we lost the structure that tells us 1+b should be grouped together and a grouped as itself //however in our brexp simplification, //(r\c)br_simp = 1+b+(a+b) //we do not allow the bracket to be opened as it is from the original expression and have not been touched def brder(c: Char, r: BRexp) : BRexp = r match { case BZERO => BZERO case BONE => BZERO case BCHAR(d) => if (c == d) BONE else BZERO case BALTS(bs, rs) => BALTS(S, rs.map(brder(c, _)))//After derivative: Splittable in the sense of PD case BSEQ(r1, r2) => if (brnullable(r1)) BALTS(S, List(BSEQ(brder(c, r1), r2), brder(c, r2) ) )//in r1\c~r2 r2's structure is maintained together with its splittablility bit else BSEQ(brder(c, r1), r2) case BSTAR(r) => BSEQ(brder(c, r), BSTAR(r)) } def bflat(rs: List[BRexp]): List[BRexp] = { rs match { case Nil => Nil//TODO: Look at this! bs should have been exhausted one bit earlier. case BZERO :: rs1 => bflat(rs1) case BALTS(S, rs1) :: rs2 => rs1 ::: bflat(rs2) case BALTS(Z, rs1) :: rs2 => BALTS(Z, rs1) :: bflat(rs2) case r1 :: rs2 => r1 :: bflat(rs2) } } def stflat(rs: List[BRexp]): List[BRexp] = { //println("bs: " + bs + "rs: "+ rs + "length of bs, rs" + bs.length + ", " + rs.length) //assert(bs.length == rs.length - 1 || bs.length == rs.length)//bs == Nil, rs == Nil May add early termination later. rs match { case Nil => Nil//TODO: Look at this! bs should have been exhausted one bit earlier. case BZERO :: rs1 => bflat(rs1) case BALTS(_, rs1) :: rs2 => rs1 ::: bflat(rs2) case r1 :: rs2 => r1 :: bflat(rs2) } } def berase(r:BRexp): Rexp = r match{ case BZERO => ZERO case BONE => ONE case BCHAR(f) => CHAR(f) case BALTS(bs, rs) => ALTS(rs.map(berase(_))) case BSEQ(r1, r2) => SEQ (berase(r1), berase(r2)) case BSTAR(r)=> STAR(berase(r)) } def br_simp(r: BRexp): BRexp = r match { case BSEQ(r1, r2) => (br_simp(r1), br_simp(r2)) match { case (BZERO, _) => BZERO case (_, BZERO) => BZERO case (BONE, r2s) => r2s case (r1s, r2s) => BSEQ(r1s, r2s) } case BALTS(bs, rs) => { //assert(bs.length == rs.length - 1) val dist_res = if(bs == S) {//all S val rs_simp = rs.map(br_simp) val flat_res = bflat(rs_simp) distinctBy(flat_res, berase) } else{//not allowed to simplify (all Z) rs } dist_res match { case Nil => {BZERO} case s :: Nil => { s} case rs => {BALTS(bs, rs)} } } //case BSTAR(r) => BSTAR(r) case r => r } def strong_br_simp(r: BRexp): BRexp = r match { case BSEQ(r1, r2) => (strong_br_simp(r1), strong_br_simp(r2)) match { case (BZERO, _) => BZERO case (_, BZERO) => BZERO case (BONE, r2s) => r2s case (r1s, r2s) => BSEQ(r1s, r2s) } case BALTS(bs, rs) => { //assert(bs.length == rs.length - 1) val dist_res = {//all S val rs_simp = rs.map(strong_br_simp) val flat_res = stflat(rs_simp) distinctBy(flat_res, berase) } dist_res match { case Nil => {BZERO} case s :: Nil => { s} case rs => {BALTS(bs, rs)} } } case BSTAR(r) => BSTAR(strong_br_simp(r)) case r => r } //we want to bound the size by a function bspill s.t. //bspill(ders_simp(r,s)) ⊂ PD(r) //and bspill is size-preserving (up to a constant factor) //so we bound |ders_simp(r,s)| by |PD(r)| //where we already have a nice bound for |PD(r)|: t^2*n^2 in Antimirov's paper //the function bspill converts a brexp into a list of rexps //the conversion mainly about this: (r1+r2)*r3*r4*.....rn -> {r1*r3*r4*....rn, r2*r3*r4*.....rn} //but this is not always allowed //sometimes, we just leave the expression as it is: //eg1: (a+b)*c -> {(a+b)*c} //eg2: r1+r2 -> {r1+r2} instead of {r1, r2} //why? //if we always return {a, b} when we encounter a+b, the property //bspill(ders_simp(r,s)) ⊂ PD(r) //does not always hold //for instance //if we call the bspill that always returns {r1, r2} when encountering r1+r2 "bspilli" //then bspilli( ders_simp( (c+cb)+c(a+b), c ) ) == bspilli(1+b+a) = {1, b, a} //However the letter a does not belong to PD( (c+cb)+c(a+b) ) //then we can no longer say ders_simp(r,s)'s size is bounded by PD(r) because the former contains something the latter does not have //In order to make sure the inclusion holds, we have to find out why new terms appeared in the bspilli set that don't exist in the PD(r) set //Why a does not belong to PD((c+cb)+c(a+b))? //PD(r1+r2) = PD(r1) union PD(r2) => PD((c+cb)+c(a+b)) = PD(c+cb) union PD(c(a+b)) //So the only possibility for PD to include a must be in the latter part of the regex, namely, c(a+b) //we have lemma that PD(r) = union of pders(s, r) where s is taken over all strings whose length does not exceed depth(r) //so PD(r) ⊂ pder(empty_string, r) union pder(c, r) union pder(ca, r) union pder(cb, r) where r = c(a+b) //RHS = {1} union pder(c, c(a+b)) //Observe that pder(c, c(a+b)) == {a+b} //a and b are together, from the original regular expression (c+cb)+c(a+b). //but by our simplification, we first flattened this a+b into the same level with 1+b, then //removed duplicates of b, thereby destroying the structure in a+b and making this term a, instead of a+b //But in PD(r) we only have a+b, no a //one ad hoc solution might be to try this bspill(ders_simp(r,s)) ⊂ PD(r) union {all letters} //But this does not hold either according to experiment. //So we need to make sure the structure r1+r2 is not simplified away if it is from the original expression def bspill(r: BRexp): List[Rexp] = { r match { case BALTS(b, rs) => { if(b == S) rs.flatMap(bspill) else List(ALTS(rs.map(berase))) } case BSEQ(r2, r3) => bspill(r2).map( a => if(a == ONE) berase(r3) else SEQ(a, berase(r3)) ) case BZERO => List() case r => List(berase(r)) } }}