package RexpRelated
import scala.language.implicitConversions
import scala.language.reflectiveCalls
import scala.annotation.tailrec
import scala.util.Try
abstract class Bit
case object Z extends Bit
case object S extends Bit
//case class C(c: Char) extends Bit
abstract class Rexp
case object ZERO extends Rexp
case object ONE extends Rexp
case class CHAR(c: Char) extends Rexp
case class ALTS(rs: List[Rexp]) extends Rexp
case class SEQ(r1: Rexp, r2: Rexp) extends Rexp
case class STAR(r: Rexp) extends Rexp
case class RECD(x: String, r: Rexp) extends Rexp
object Rexp{
type Bits = List[Bit]
// abbreviations
type Mon = (Char, Rexp)
type Lin = Set[Mon]
def ALT(r1: Rexp, r2: Rexp) = ALTS(List(r1, r2))
def PLUS(r: Rexp) = SEQ(r, STAR(r))
def AALT(bs: Bits, r1: ARexp, r2: ARexp) = AALTS(bs, List(r1, r2))
def distinctBy[B, C](xs: List[B], f: B => C, acc: List[C] = Nil): List[B] = xs match {
case Nil => Nil
case (x::xs) => {
val res = f(x)
if (acc.contains(res)) distinctBy(xs, f, acc)
else x::distinctBy(xs, f, res::acc)
}
}
// some convenience for typing in regular expressions
def charlist2rexp(s : List[Char]): Rexp = s match {
case Nil => ONE
case c::Nil => CHAR(c)
case c::s => SEQ(CHAR(c), charlist2rexp(s))
}
implicit def string2rexp(s : String) : Rexp = charlist2rexp(s.toList)
implicit def RexpOps(r: Rexp) = new {
def | (s: Rexp) = ALT(r, s)
def % = STAR(r)
def ~ (s: Rexp) = SEQ(r, s)
}
implicit def stringOps(s: String) = new {
def | (r: Rexp) = ALT(s, r)
def | (r: String) = ALT(s, r)
def % = STAR(s)
def ~ (r: Rexp) = SEQ(s, r)
def ~ (r: String) = SEQ(s, r)
def $ (r: Rexp) = RECD(s, r)
}
// translation into ARexps
def fuse(bs: Bits, r: ARexp) : ARexp = r match {
case AZERO => AZERO
case AONE(cs) => AONE(bs ++ cs)
case ACHAR(cs, f) => ACHAR(bs ++ cs, f)
case AALTS(cs, rs) => AALTS(bs ++ cs, rs)
case ASEQ(cs, r1, r2) => ASEQ(bs ++ cs, r1, r2)
case ASTAR(cs, r) => ASTAR(bs ++ cs, r)
}
def internalise(r: Rexp) : ARexp = r match {
case ZERO => AZERO
case ONE => AONE(Nil)
case CHAR(c) => ACHAR(Nil, c)
case ALTS(List(r1, r2)) =>
AALTS(Nil, List(fuse(List(Z), internalise(r1)), fuse(List(S), internalise(r2))))
case ALTS(r1::rs) => {
val AALTS(Nil, rs2) = internalise(ALTS(rs))
AALTS(Nil, fuse(List(Z), internalise(r1)) :: rs2.map(fuse(List(S), _)))
}
case SEQ(r1, r2) => ASEQ(Nil, internalise(r1), internalise(r2))
case STAR(r) => ASTAR(Nil, internalise(r))
case RECD(x, r) => internalise(r)
}
internalise(("a" | "ab") ~ ("b" | ""))
def decode_aux(r: Rexp, bs: Bits) : (Val, Bits) = (r, bs) match {
case (ONE, bs) => (Empty, bs)
case (CHAR(f), bs) => (Chr(f), bs)
case (ALTS(r::Nil), bs) => decode_aux(r, bs)//this case seems only used when we simp a regex before derivatives and it contains things like alt("a")
case (ALTS(rs), bs) => bs match {
case Z::bs1 => {
val (v, bs2) = decode_aux(rs.head, bs1)
(Left(v), bs2)
}
case S::bs1 => {
val (v, bs2) = decode_aux(ALTS(rs.tail), bs1)
(Right(v), bs2)
}
}
case (SEQ(r1, r2), bs) => {
val (v1, bs1) = decode_aux(r1, bs)
val (v2, bs2) = decode_aux(r2, bs1)
(Sequ(v1, v2), bs2)
}
case (STAR(r1), S::bs) => {
val (v, bs1) = decode_aux(r1, bs)
//println(v)
val (Stars(vs), bs2) = decode_aux(STAR(r1), bs1)
(Stars(v::vs), bs2)
}
case (STAR(_), Z::bs) => (Stars(Nil), bs)
case (RECD(x, r1), bs) => {
val (v, bs1) = decode_aux(r1, bs)
(Rec(x, v), bs1)
}
}
def decode(r: Rexp, bs: Bits) = decode_aux(r, bs) match {
case (v, Nil) => v
case _ => throw new Exception("Not decodable")
}
def code(v: Val): Bits = v match {
case Empty => Nil
case Chr(a) => Nil
case Left(v) => Z :: code(v)
case Right(v) => S :: code(v)
case Sequ(v1, v2) => code(v1) ::: code(v2)
case Stars(Nil) => Z::Nil
case Stars(v::vs) => S::code(v) ::: code(Stars(vs))
}
def retrieve(r: ARexp, v: Val): Bits = (r,v) match {
case (AONE(bs), Empty) => bs
case (ACHAR(bs, c), Chr(d)) => bs
case (AALTS(bs, a::Nil), v) => bs ++ retrieve(a, v)
case (AALTS(bs, as), Left(v)) => bs ++ retrieve(as.head,v)
case (AALTS(bs, as), Right(v)) => bs ++ retrieve(AALTS(Nil,as.tail),v)
case (ASEQ(bs, a1, a2), Sequ(v1, v2)) => bs ++ retrieve(a1, v1) ++ retrieve(a2, v2)
case (ASTAR(bs, a), Stars(Nil)) => bs ++ List(Z)
case (ASTAR(bs, a), Stars(v::vs)) => bs ++ List(S) ++ retrieve(a, v) ++ retrieve(ASTAR(Nil, a), Stars(vs))
}//bug here last clause should not add list(S)
//erase function: extracts the regx from Aregex
def erase(r:ARexp): Rexp = r match{
case AZERO => ZERO
case AONE(_) => ONE
case ACHAR(bs, f) => CHAR(f)
case AALTS(bs, rs) => ALTS(rs.map(erase(_)))
case ASEQ(bs, r1, r2) => SEQ (erase(r1), erase(r2))
case ASTAR(cs, r)=> STAR(erase(r))
}
//--------------------------------------------------------------------------------------------------------START OF NON-BITCODE PART
// nullable function: tests whether the regular
// expression can recognise the empty string
def nullable (r: Rexp) : Boolean = r match {
case ZERO => false
case ONE => true
case CHAR(_) => false
case ALTS(rs) => rs.exists(nullable)
case SEQ(r1, r2) => nullable(r1) && nullable(r2)
case STAR(_) => true
case RECD(_, r) => nullable(r)
//case PLUS(r) => nullable(r)
}
// derivative of a regular expression w.r.t. a character
def der (c: Char, r: Rexp) : Rexp = r match {
case ZERO => ZERO
case ONE => ZERO
case CHAR(f) => if (c == f) ONE else ZERO
case ALTS(List(r1, r2)) => ALTS(List(der(c, r1), der(c, r2)))
case SEQ(r1, r2) =>
if (nullable(r1)) ALTS(List(SEQ(der(c, r1), r2), der(c, r2)))
else SEQ(der(c, r1), r2)
case STAR(r) => SEQ(der(c, r), STAR(r))
case RECD(_, r1) => der(c, r1)
//case PLUS(r) => SEQ(der(c, r), STAR(r))
}
def ders (s: List[Char], r: Rexp) : Rexp = s match {
case Nil => r
case c::s => ders(s, der(c, r))
}
def der_seqo(r:Rexp, s: List[Char],acc: List[Rexp]) : List[Rexp] = s match{
case Nil => acc ::: List(r)
case c::cs => der_seqo(der(c, r), cs, acc ::: List(r))
}
def der_seq_revo(r:Rexp, s: List[Char], acc: List[Rexp]): List[Rexp] = s match{
case Nil => r::acc
case c::cs =>der_seq_revo(r, cs, ders(s, r) :: acc )
}
def re_closeo(l1: List[Rexp], l2: List[Rexp], re_init: Rexp): Rexp = l1 match {
case Nil => re_init
case c::cs => if(nullable(c)) re_closeo(cs, l2.tail, ALT(re_init, l2.head) )
else re_closeo(cs, l2.tail, re_init)
}
//HERE
def closed_string_dero(r1: Rexp, r2: Rexp, s: List[Char]): Rexp = {
val l1 = der_seqo(r1, s, Nil)
val l2 = der_seq_revo(r2, s, Nil)
val Re = re_closeo((l1.reverse).tail, l2.tail, SEQ(l1.last, l2.head))
Re
}
//derivative w.r.t string
def ders2(s: List[Char], r: Rexp) : Rexp = (s, r) match {
case (Nil, r) => r
case (s, ZERO) => ZERO
case (s, ONE) => if (s == Nil) ONE else ZERO
case (s, CHAR(c)) => if (s == List(c)) ONE else
if (s == Nil) CHAR(c) else ZERO
case (s, ALTS(List(r1, r2))) => ALT(ders2(s, r1), ders2(s, r2))
case (s, SEQ(r1, r2)) => closed_string_dero(r1, r2, s)
case (c::cs, STAR(r)) => closed_string_dero(der(c, r), STAR(r), cs)
}
def flatten(v: Val) : String = v match {
case Empty => ""
case Chr(c) => c.toString
case Left(v) => flatten(v)
case Right(v) => flatten(v)
case Sequ(v1, v2) => flatten(v1) + flatten(v2)
case Stars(vs) => vs.map(flatten).mkString
case Rec(_, v) => flatten(v)
}
// extracts an environment from a value
def env(v: Val) : List[(String, String)] = v match {
case Empty => Nil
case Chr(c) => Nil
case Left(v) => env(v)
case Right(v) => env(v)
case Sequ(v1, v2) => env(v1) ::: env(v2)
case Stars(vs) => vs.flatMap(env)
case Rec(x, v) => (x, flatten(v))::env(v)
}
// injection part
def mkeps(r: Rexp) : Val = r match {
case ONE => Empty
case ALTS(List(r1, r2)) =>
if (nullable(r1)) Left(mkeps(r1)) else Right(mkeps(r2))
case SEQ(r1, r2) => Sequ(mkeps(r1), mkeps(r2))
case STAR(r) => Stars(Nil)
case RECD(x, r) => Rec(x, mkeps(r))
//case PLUS(r) => Stars(List(mkeps(r)))
}
def inj(r: Rexp, c: Char, v: Val) : Val = (r, v) match {
case (STAR(r), Sequ(v1, Stars(vs))) => Stars(inj(r, c, v1)::vs)
case (SEQ(r1, r2), Sequ(v1, v2)) => Sequ(inj(r1, c, v1), v2)
case (SEQ(r1, r2), Left(Sequ(v1, v2))) => Sequ(inj(r1, c, v1), v2)
case (SEQ(r1, r2), Right(v2)) => Sequ(mkeps(r1), inj(r2, c, v2))
case (ALTS(List(r1, r2)), Left(v1)) => Left(inj(r1, c, v1))
case (ALTS(List(r1, r2)), Right(v2)) => Right(inj(r2, c, v2))
case (CHAR(_), Empty) => Chr(c)
case (RECD(x, r1), _) => Rec(x, inj(r1, c, v))
//case (PLUS(r), Sequ(v1, Stars(vs))) => Stars(inj(r, c, v1)::vs)
}
def lex(r: Rexp, s: List[Char]) : Val = s match {
case Nil => if (nullable(r)) mkeps(r) else throw new Exception("Not matched")
case c::cs => inj(r, c, lex(der(c, r), cs))
}
def lexing(r: Rexp, s: String) : Val = lex(r, s.toList)
// some "rectification" functions for simplification
def F_ID(v: Val): Val = v
def F_RIGHT(f: Val => Val) = (v:Val) => Right(f(v))
def F_LEFT(f: Val => Val) = (v:Val) => Left(f(v))
def F_ALT(f1: Val => Val, f2: Val => Val) = (v:Val) => v match {
case Right(v) => Right(f2(v))
case Left(v) => Left(f1(v))
}
def F_SEQ(f1: Val => Val, f2: Val => Val) = (v:Val) => v match {
case Sequ(v1, v2) => Sequ(f1(v1), f2(v2))
}
def F_SEQ_Empty1(f1: Val => Val, f2: Val => Val) =
(v:Val) => Sequ(f1(Empty), f2(v))
def F_SEQ_Empty2(f1: Val => Val, f2: Val => Val) =
(v:Val) => Sequ(f1(v), f2(Empty))
def F_RECD(f: Val => Val) = (v:Val) => v match {
case Rec(x, v) => Rec(x, f(v))
}
def F_ERROR(v: Val): Val = throw new Exception("error")
// simplification of regular expressions returning also an
// rectification function; no simplification under STAR
def simp(r: Rexp): (Rexp, Val => Val) = r match {
case ALTS(List(r1, r2)) => {
val (r1s, f1s) = simp(r1)
val (r2s, f2s) = simp(r2)
(r1s, r2s) match {
case (ZERO, _) => (r2s, F_RIGHT(f2s))
case (_, ZERO) => (r1s, F_LEFT(f1s))
case _ => if (r1s == r2s) (r1s, F_LEFT(f1s))
else (ALTS(List(r1s, r2s)), F_ALT(f1s, f2s))
}
}
case SEQ(r1, r2) => {
val (r1s, f1s) = simp(r1)
val (r2s, f2s) = simp(r2)
(r1s, r2s) match {
case (ZERO, _) => (ZERO, F_ERROR)
case (_, ZERO) => (ZERO, F_ERROR)
case (ONE, _) => (r2s, F_SEQ_Empty1(f1s, f2s))
case (_, ONE) => (r1s, F_SEQ_Empty2(f1s, f2s))
case _ => (SEQ(r1s,r2s), F_SEQ(f1s, f2s))
}
}
case RECD(x, r1) => {
val (r1s, f1s) = simp(r1)
(RECD(x, r1s), F_RECD(f1s))
}
case r => (r, F_ID)
}
/*
val each_simp_time = scala.collection.mutable.ArrayBuffer.empty[Long]
val each_simp_timeb = scala.collection.mutable.ArrayBuffer.empty[Long]
*/
def lex_simp(r: Rexp, s: List[Char]) : Val = s match {
case Nil => {
if (nullable(r)) {
mkeps(r)
}
else throw new Exception("Not matched")
}
case c::cs => {
val (r_simp, f_simp) = simp(der(c, r))
inj(r, c, f_simp(lex_simp(r_simp, cs)))
}
}
def lexing_simp(r: Rexp, s: String) : Val = lex_simp(r, s.toList)
//println(lexing_simp(("a" | "ab") ~ ("b" | ""), "ab"))
// filters out all white spaces
def tokenise(r: Rexp, s: String) =
env(lexing_simp(r, s)).filterNot { _._1 == "w"}
//reads the string from a file
def fromFile(name: String) : String =
io.Source.fromFile(name).mkString
def tokenise_file(r: Rexp, name: String) =
tokenise(r, fromFile(name))
// Testing
//============
def time[T](code: => T) = {
val start = System.nanoTime()
val result = code
val end = System.nanoTime()
println((end - start)/1.0e9)
result
}
//--------------------------------------------------------------------------------------------------------END OF NON-BITCODE PART
// bnullable function: tests whether the aregular
// expression can recognise the empty string
def bnullable (r: ARexp) : Boolean = r match {
case AZERO => false
case AONE(_) => true
case ACHAR(_,_) => false
case AALTS(_, rs) => rs.exists(bnullable)
case ASEQ(_, r1, r2) => bnullable(r1) && bnullable(r2)
case ASTAR(_, _) => true
}
def mkepsBC(r: ARexp) : Bits = r match {
case AONE(bs) => bs
case AALTS(bs, rs) => {
val n = rs.indexWhere(bnullable)
bs ++ mkepsBC(rs(n))
}
case ASEQ(bs, r1, r2) => bs ++ mkepsBC(r1) ++ mkepsBC(r2)
case ASTAR(bs, r) => bs ++ List(Z)
}
// derivative of a regular expression w.r.t. a character
def bder(c: Char, r: ARexp) : ARexp = r match {
case AZERO => AZERO
case AONE(_) => AZERO
case ACHAR(bs, f) => if (c == f) AONE(bs) else AZERO
case AALTS(bs, rs) => AALTS(bs, rs.map(bder(c, _)))
case ASEQ(bs, r1, r2) =>
if (bnullable(r1)) AALT(bs, ASEQ(Nil, bder(c, r1), r2), fuse(mkepsBC(r1), bder(c, r2)))
else ASEQ(bs, bder(c, r1), r2)
case ASTAR(bs, r) => ASEQ(bs, fuse(List(S), bder(c, r)), ASTAR(Nil, r))
}
// derivative w.r.t. a string (iterates bder)
@tailrec
def bders (s: List[Char], r: ARexp) : ARexp = s match {
case Nil => r
case c::s => bders(s, bder(c, r))
}
def flats(rs: List[ARexp]): List[ARexp] = rs match {
case Nil => Nil
case AZERO :: rs1 => flats(rs1)
case AALTS(bs, rs1) :: rs2 => rs1.map(fuse(bs, _)) ::: flats(rs2)
case r1 :: rs2 => r1 :: flats(rs2)
}
/*
def remove(v: Val): Val = v match{
case Right(v1) => v1
case Left(v1) => v1
case _ => throw new Exception("Not removable")
}*/
def augment(v: Val, i: Int): Val = if(i > 1) augment(Right(v), i - 1) else Right(v)
//an overly complex version
/*
if(rel_dist >0){//the regex we are dealing with is not what v points at
rs match{
case Nil => throw new Exception("Trying to simplify a non-existent value")
case AZERO :: rs1 => flats_vsimp(rs1, rel_dist - 1, remove(v))
case AALTS(bs, rs1) :: rs2 => flats_vsimp(rs2, rel_dist - 1, augment(v, rs1.length - 1))//rs1 is guaranteed to have a len geq 2
case r1 :: rs2 => flats_vsimp(rs2, rel_dist - 1, v)
}
}
else if(rel_dist == 0){//we are dealing with regex v is pointing to -- "v->r itself"
rs match{//r1 cannot be zero
AALTS(bs, rs1) :: rs2 => flats_vsimp( )
AZERO::rs2 => throw new Exception("Value corresponds to zero")
r1::rs2 => flats_vsimp(rs2, rel_dist - 1, v)
}
}
else{
}
*/
def flats_vsimp(rs: List[ARexp], position: Int): Int = (rs, position) match {
case (_, 0) => 0
case (Nil, _) => 0
case (AZERO :: rs1, _) => flats_vsimp(rs1, position - 1) - 1
case (AALTS(bs, rs1) :: rs2, _) => rs1.length - 1 + flats_vsimp(rs2, position - 1)
case (r1 :: rs2, _) => flats_vsimp(rs2, position - 1)
}
def rflats(rs: List[Rexp]): List[Rexp] = rs match {
case Nil => Nil
case ZERO :: rs1 => rflats(rs1)
case ALTS(rs1) :: rs2 => rs1 ::: rflats(rs2)
case r1 :: rs2 => r1 :: rflats(rs2)
}
var flats_time = 0L
var dist_time = 0L
def bsimp(r: ARexp): ARexp = r match {
case ASEQ(bs1, r1, r2) => (bsimp(r1), bsimp(r2)) match {
case (AZERO, _) => AZERO
case (_, AZERO) => AZERO
case (AONE(bs2), r2s) => fuse(bs1 ++ bs2, r2s)
case (r1s, r2s) => ASEQ(bs1, r1s, r2s)
}
case AALTS(bs1, rs) => {
val rs_simp = rs.map(bsimp)
val flat_res = flats(rs_simp)
val dist_res = distinctBy(flat_res, erase)
dist_res match {
case Nil => AZERO
case r :: Nil => fuse(bs1, r)
case rs => AALTS(bs1, rs)
}
}
//case ASTAR(bs, r) => ASTAR(bs, bsimp(r))
case r => r
}
//only print at the top level
def find_pos(v: Val, rs: List[ARexp]): Int = (v, rs) match{
case (v, r::Nil) => 0
case (Right(v), r::rs) => find_pos(v, rs) + 1
case (Left(v), r::rs) => 0
//case (v, _) => 0
}
def find_pos_aux(v: Val, r: ARexp): Int = r match {
case AALTS(bs, rs) => find_pos(v, rs)
case r => 0
}
def remove(v: Val, rs: List[ARexp]) : Val = (v,rs) match {//remove the outmost layer of ALTS's Left and Right
//we have to use r to detect the bound of nested L/Rs
case (v, r::Nil) => v
case (Right(v), r::rs) => remove(v, rs)
case (Left(v), r::rs) => v
//case (v, r::Nil) => v
}
def simple_end(v: Val): Boolean = v match {
case Left(v) => return false
case Right(v) => return simple_end(v)
case v => return true
}
def isend(v: Val, rs: List[ARexp], position: Int): Boolean = {//TODO: here the slice api i am not familiar with so this call might be incorrect and crash the bsimp2
val rsbh = rs.slice(position + 1, rs.length)
val out_end = if(flats(rsbh) == Nil) true else false
val inner_end = simple_end(v)
inner_end && out_end
}
def get_coat(v: Val, rs: List[Rexp], vs: Val): Val = (v, rs) match{//the dual operation of remove(so-called by myself)
case (Right(v), r::Nil) => Right(vs)
case (Left(v), r::rs) => Left(vs)
case (Right(v), r::rs) => Right(get_coat(v, rs, vs))
}
def coat(v: Val, i: Int) : Val = i match {
case 0 => v
case i => coat(Right(v), i - 1)
}
//This version takes a regex and a value, return a simplified regex and its corresponding simplified value
def bsimp2(r: ARexp, v: Val): (ARexp, Val) = (r,v) match{
case (ASEQ(bs1, r1, r2), Sequ(v1, v2)) => (bsimp2(r1, v1), bsimp2(r2, v2)) match {
case ((AZERO, _), (_, _) )=> (AZERO, undefined)
case ((_, _), (AZERO, _)) => (AZERO, undefined)
case ((AONE(bs2), v1s) , (r2s, v2s)) => (fuse(bs1 ++ bs2, r2s), v2s )//v2 tells how to retrieve bits in r2s, which is enough as the bits of the first part of the sequence has already been integrated to the top level of the second regx.
case ((r1s, v1s), (r2s, v2s)) => (ASEQ(bs1, r1s, r2s), Sequ(v1s, v2s))
}
case (AALTS(bs1, rs), v) => {
//phase 1 transformation so that aalts(bs1, rs) => aalts(bs1, rsf) and v => vf
val init_ind = find_pos(v, rs)
val vs = bsimp2(rs(init_ind), remove(v, rs))//remove all the outer layers of left and right in v to match the regx rs[i]
//println(vs)
val rs_simp = rs.map(bsimp)
val vs_kernel = rs_simp(init_ind) match {
case AALTS(bs2, rs2) => remove(vs._2, rs2)//remove the secondary layer of left and right
case r => vs._2
}
val flat_res = flats(rs_simp)
val vs_for_coating = if(isend(vs._2, rs_simp, init_ind)||flat_res.length == 1) vs_kernel else Left(vs_kernel)
val r_s = rs_simp(init_ind)//or vs._1
val shift = flats_vsimp(rs_simp, init_ind) + find_pos_aux(vs._2, rs_simp(init_ind))
val new_ind = init_ind + shift
val vf = coat(vs_for_coating, new_ind)
//flats2 returns a list of regex and a single v
//now |- vf: ALTS(bs1, flat_res)
//phase 2 transformation so that aalts(bs1, rsf) => aalts(bs, rsdb) and vf => vdb
val dist_res = distinctBy(flat_res, erase)
val front_part = distinctBy(flat_res.slice(0, new_ind + 1), erase)
//val size_reduction = new_ind + 1 - front_part.length
val vdb = if(dist_res.length == front_part.length )//that means the regex we are interested in is at the end of the list
{
coat(vs_kernel, front_part.length - 1)
}
else{
coat(Left(vs_kernel), front_part.length - 1)
}
//println(vdb)
//we don't need to transform vdb as this phase will not make enough changes to the regex to affect value.
//the above statement needs verification. but can be left as is now.
dist_res match {
case Nil => (AZERO, undefined)
case s :: Nil => (fuse(bs1, s), vdb)
case rs => (AALTS(bs1, rs), vdb)
}
}
//case ASTAR(bs, r) => ASTAR(bs, bsimp(r))
case (r, v) => (r, v)
}
def vsimp(r: ARexp, v: Val): Val = bsimp2(r, v)._2
/*This version was first intended for returning a function however a value would be simpler.
def bsimp2(r: ARexp, v: Val): (ARexp, Val => Val) = (r,v) match{
case (ASEQ(bs1, r1, r2), v) => (bsimp2(r1), bsimp2(r2)) match {
case ((AZERO, _), (_, _) )=> (AZERO, undefined)
case ((_, _), (AZERO, _)) => (AZERO, undefined)
case ((AONE(bs2), f1) , (r2s, f2)) => (fuse(bs1 ++ bs2, r2s), lambda v => v match { case Sequ(_, v) => f2(v) } )
case ((r1s, f1), (r2s, f2)) => (ASEQ(bs1, r1s, r2s), lambda v => v match {case Sequ(v1, v2) => Sequ(f1(v1), f2(v2))}
}
case AALTS(bs1, rs) => {
val init_ind = find_pos(v, rs)
val vs = bsimp2(rs[init_ind], remove(v, rs))//remove all the outer layers of left and right in v to match the regx rs[i]
val rs_simp = rs.map(bsimp)
val vs_kernel = rs_simp[init_ind] match {
case AALTS(bs2, rs2) => remove(vs, rs_simp[init_ind])//remove the secondary layer of left and right
case r => vs
}
val vs_for_coating = if(isend(vs, rs_simp, init_ind)) vs_kernel else Left(vs_kernel)
val r_s = rs_simp[init_ind]
val shift = flats_vsimp(vs, rs_simp, init_ind) + find_pos(vs, rs_simp[init_ind])
val vf = coat(vs_for_coating, shift + init_ind)
val flat_res = flats(rs_simp)//flats2 returns a list of regex and a single v
val dist_res = distinctBy(flat_res, erase)
dist_res match {
case Nil => AZERO
case s :: Nil => fuse(bs1, s)
case rs => AALTS(bs1, rs)
}
}
//case ASTAR(bs, r) => ASTAR(bs, bsimp(r))
case r => r
}*/
def super_bsimp(r: ARexp): ARexp = r match {
case ASEQ(bs1, r1, r2) => (super_bsimp(r1), super_bsimp(r2)) match {
case (AZERO, _) => AZERO
case (_, AZERO) => AZERO
case (AONE(bs2), r2s) => fuse(bs1 ++ bs2, r2s)//万一是(r1, alts(rs))这种形式呢
case (AALTS(bs2, rs), r2) => AALTS(bs1 ++ bs2, rs.map(r => r match {case AONE(bs3) => fuse(bs3, r2) case r => ASEQ(Nil, r, r2)} ) )
case (r1s, r2s) => ASEQ(bs1, r1s, r2s)
}
case AALTS(bs1, rs) => {
val rs_simp = rs.map(super_bsimp)
val flat_res = flats(rs_simp)
val dist_res = distinctBy(flat_res, erase)
dist_res match {
case Nil => AZERO
case s :: Nil => fuse(bs1, s)
case rs => AALTS(bs1, rs)
}
}
//case ASTAR(bs, r) => ASTAR(bs, bsimp(r))
case r => r
}
def simp_weakened(r: Rexp): Rexp = r match {
case SEQ(r1, r2) => (simp_weakened(r1), r2) match {
case (ZERO, _) => ZERO
case (_, ZERO) => ZERO
case (ONE, r2s) => r2s
case (r1s, r2s) => SEQ(r1s, r2s)
}
case ALTS(rs) => {
val rs_simp = rs.map(simp_weakened)
val flat_res = rflats(rs_simp)
val dist_res = rs_simp.distinct
dist_res match {
case Nil => ZERO
case s :: Nil => s
case rs => ALTS(rs)
}
}
case STAR(r) => STAR(simp_weakened(r))
case r => r
}
def bders_simp (s: List[Char], r: ARexp) : ARexp = s match {
case Nil => r
case c::s => bders_simp(s, bsimp(bder(c, r)))
}
//----------------------------------------------------------------------------experiment bsimp
/*
*/
/*
def time[T](code: => T) = {
val start = System.nanoTime()
val result = code
val end = System.nanoTime()
println((end - start)/1.0e9)
result
}
*/
// main unsimplified lexing function (produces a value)
def blex(r: ARexp, s: List[Char]) : Bits = s match {
case Nil => if (bnullable(r)) mkepsBC(r) else throw new Exception("Not matched")
case c::cs => {
val der_res = bder(c,r)
blex(der_res, cs)
}
}
def bpre_lexing(r: Rexp, s: String) = blex(internalise(r), s.toList)
def blexing(r: Rexp, s: String) : Val = decode(r, blex(internalise(r), s.toList))
var bder_time = 0L
var bsimp_time = 0L
var mkepsBC_time = 0L
var small_de = 2
var big_de = 5
var usual_de = 3
def blex_simp(r: ARexp, s: List[Char]) : Bits = s match {
case Nil => {
if (bnullable(r)) {
//println(asize(r))
mkepsBC(r)
}
else throw new Exception("Not matched")
}
case c::cs => {
val der_res = bder(c,r)
val simp_res = bsimp(der_res)
blex_simp(simp_res, cs)
}
}
def super_blex_simp(r: ARexp, s: List[Char]): Bits = s match {
case Nil => {
if (bnullable(r)) {
mkepsBC(r)
}
else throw new Exception("Not matched")
}
case c::cs => {
super_blex_simp(super_bsimp(bder(c,r)), cs)
}
}
def blex_real_simp(r: ARexp, s: List[Char]): ARexp = s match{
case Nil => r
case c::cs => blex_real_simp(bsimp(bder(c, r)), cs)
}
//size: of a Aregx for testing purposes
def size(r: Rexp) : Int = r match {
case ZERO => 1
case ONE => 1
case CHAR(_) => 1
case SEQ(r1, r2) => 1 + size(r1) + size(r2)
case ALTS(rs) => 1 + rs.map(size).sum
case STAR(r) => 1 + size(r)
}
def asize(a: ARexp) = size(erase(a))
// decoding does not work yet
def blexing_simp(r: Rexp, s: String) = {
val bit_code = blex_simp(internalise(r), s.toList)
decode(r, bit_code)
}
def super_blexing_simp(r: Rexp, s: String) = {
decode(r, super_blex_simp(internalise(r), s.toList))
}
// Lexing Rules for a Small While Language
//symbols
/*
val SYM = PRED("abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ".contains(_))
//digits
val DIGIT = PRED("0123456789".contains(_))
//identifiers
val ID = SYM ~ (SYM | DIGIT).%
//numbers
val NUM = STAR(DIGIT)
//keywords
val KEYWORD : Rexp = "skip" | "while" | "do" | "if" | "then" | "else" | "read" | "write" | "true" | "false"
val AKEYWORD: Rexp = ALTS(List("skip" , "while" , "do" , "if" , "then" , "else" , "read" , "write" , "true" , "false"))
//semicolons
val SEMI: Rexp = ";"
//operators
val OP: Rexp = ":=" | "==" | "-" | "+" | "*" | "!=" | "<" | ">" | "<=" | ">=" | "%" | "/"
val AOP: Rexp = ALTS(List(":=" , "==" , "-" , "+" , "*" , "!=" , "<" , ">" , "<=" , ">=" , "%" , "/"))
//whitespaces
val WHITESPACE = PLUS(" " | "\n" | "\t")
//parentheses
val RPAREN: Rexp = ")"
val LPAREN: Rexp = "("
val BEGIN: Rexp = "{"
val END: Rexp = "}"
//strings...but probably needs not
val STRING: Rexp = "\"" ~ SYM.% ~ "\""
val WHILE_REGS = (("k" $ KEYWORD) |
("i" $ ID) |
("o" $ OP) |
("n" $ NUM) |
("s" $ SEMI) |
("str" $ STRING) |
("p" $ (LPAREN | RPAREN)) |
("b" $ (BEGIN | END)) |
("w" $ WHITESPACE)).%
val AWHILE_REGS = (
ALTS(
List(
("k" $ AKEYWORD),
("i" $ ID),
("o" $ AOP) ,
("n" $ NUM) ,
("s" $ SEMI) ,
("str" $ STRING),
("p" $ (LPAREN | RPAREN)),
("b" $ (BEGIN | END)),
("w" $ WHITESPACE)
)
)
).%
*/
//--------------------------------------------------------------------------------------------------------START OF NON-BITCODE PART (TESTING)
/*
// Two Simple While programs
//========================
println("prog0 test")
val prog0 = """read n"""
println(env(lexing_simp(WHILE_REGS, prog0)))
println(tokenise(WHILE_REGS, prog0))
println("prog1 test")
val prog1 = """read n; write (n)"""
println(tokenise(WHILE_REGS, prog1))
*/
// Bigger Tests
//==============
def escape(raw: String): String = {
import scala.reflect.runtime.universe._
Literal(Constant(raw)).toString
}
val prog2 = """
write "Fib";
read n;
minus1 := 0;
minus2 := 1;
while n > 0 do {
temp := minus2;
minus2 := minus1 + minus2;
minus1 := temp;
n := n - 1
};
write "Result";
write minus2
"""
val prog3 = """
start := 1000;
x := start;
y := start;
z := start;
while 0 < x do {
while 0 < y do {
while 0 < z do {
z := z - 1
};
z := start;
y := y - 1
};
y := start;
x := x - 1
}
"""
/*
for(i <- 400 to 400 by 1){
println(i+":")
blexing_simp(WHILE_REGS, prog2 * i)
} */
/*
for (i <- 2 to 5){
for(j <- 1 to 3){
println(i,j)
small_de = i
usual_de = i + j
big_de = i + 2*j
blexing_simp(AWHILE_REGS, prog2 * 100)
}
}*/
/*
println("Tokens of prog2")
println(tokenise(WHILE_REGS, prog2).mkString("\n"))
val fib_tokens = tokenise(WHILE_REGS, prog2)
fib_tokens.map{case (s1, s2) => (escape(s1), escape(s2))}.mkString(",\n")
val test_tokens = tokenise(WHILE_REGS, prog3)
test_tokens.map{case (s1, s2) => (escape(s1), escape(s2))}.mkString(",\n")
*/
/*
println("time test for blexing_simp")
for (i <- 1 to 1 by 1) {
lexing_simp(WHILE_REGS, prog2 * i)
blexing_simp(WHILE_REGS, prog2 * i)
for( j <- 0 to each_simp_timeb.length - 1){
if( each_simp_timeb(j)/each_simp_time(j) >= 10.0 )
println(j, each_simp_timeb(j), each_simp_time(j))
}
}
*/
//--------------------------------------------------------------------------------------------------------END OF NON-BITCODE PART (TESTING)
def clear() = {
print("")
//print("\33[H\33[2J")
}
//testing the two lexings produce the same value
//enumerates strings of length n over alphabet cs
def strs(n: Int, cs: String) : Set[String] = {
if (n == 0) Set("")
else {
val ss = strs(n - 1, cs)
ss ++
(for (s <- ss; c <- cs.toList) yield c + s)
}
}
def enum(n: Int, s: String) : Stream[Rexp] = n match {
case 0 => ZERO #:: ONE #:: s.toStream.map(CHAR)
case n => {
val rs = enum(n - 1, s)
rs #:::
(for (r1 <- rs; r2 <- rs) yield ALT(r1, r2)) #:::
(for (r1 <- rs; r2 <- rs) yield SEQ(r1, r2)) #:::
(for (r1 <- rs) yield STAR(r1))
}
}
//tests blexing and lexing
def tests_blexer_simp(ss: Set[String])(r: Rexp) = {
clear()
//println(s"Testing ${r}")
for (s <- ss.par) yield {
val res1 = Try(Some(lexing_simp(r, s))).getOrElse(None)
val res2 = Try(Some(super_blexing_simp(r, s))).getOrElse(None)
if (res1 != res2) println(s"Disagree on ${r} and ${s}")
if (res1 != res2) println(s" ${res1} != ${res2}")
if (res1 != res2) Some((r, s)) else None
}
}
/*
def single_expression_explorer(ar: ARexp, ss: Set[String]): Unit = {
for (s <- ss){
val der_res = bder(c, ar)
val simp_res = bsimp(der_res)
println(asize(der_res))
println(asize(simp_res))
single_expression_explorer(simp_res, (sc - c))
}
}*/
//single_expression_explorer(internalise(("c"~("a"+"b"))%) , Set('a','b','c'))
}
import Rexp.Bits
abstract class ARexp
case object AZERO extends ARexp
case class AONE(bs: Bits) extends ARexp
case class ACHAR(bs: Bits, f: Char) extends ARexp
case class AALTS(bs: Bits, rs: List[ARexp]) extends ARexp
case class ASEQ(bs: Bits, r1: ARexp, r2: ARexp) extends ARexp
case class ASTAR(bs: Bits, r: ARexp) extends ARexp
abstract class Val
case object Empty extends Val
case class Chr(c: Char) extends Val
case class Sequ(v1: Val, v2: Val) extends Val
case class Left(v: Val) extends Val
case class Right(v: Val) extends Val
case class Stars(vs: List[Val]) extends Val
case class Rec(x: String, v: Val) extends Val
case object undefined extends Val
//case class Pos(i: Int, v: Val) extends Val
case object Prd extends Val