import Element.elem
import RexpRelated._
import RexpRelated.Rexp._
import Partial._
import BRexp._
import scala.collection.mutable.ListBuffer
object Spiral{
val space = elem(" ")
val corner = elem("+")
def spiral(nEdges: Int, direction: Int): Element = {
if(nEdges == 1)
elem("+")
else {
val sp = spiral(nEdges - 1, (direction + 3) % 4)
def verticalBar = elem('|', 1, sp.height)
def horizontalBar = elem('-', sp.width, 1)
if(direction == 0)
(corner beside horizontalBar) above sp//(sp beside space)
else if (direction == 1)
sp beside (corner above verticalBar)
else if (direction == 2)
(space beside sp) above (horizontalBar beside corner)
else
(verticalBar above corner) beside (space above sp)
}
}
val alphabet = ("""abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789.:"=()\;-+*!<>\/%{} """+"\n\t").toSet//Set('a','b','c')
def bregx_tree(r: BRexp): Element = regx_tree(berase(r))
def regx_tree(r: Rexp): Element = aregx_tree(internalise(r))
def annotated_tree(r: ARexp): Element = {
r match {
case ACHAR(bs, d) => {
//val Some(d) = alphabet.find(f)
d match {
case '\n' => elem("\\n")
case '\t' => elem("\\t")
case ' ' => elem("space")
case d => if(bs.isEmpty) elem(d.toString) else elem(d.toString++" ") beside elem(bs.toString)
}
}
case AONE(bs) => {
if(bs.isEmpty) elem("ONE") else elem("ONE ") beside elem(bs.toString)
}
case AZERO => {
elem("ZERO")
}
case ASEQ(bs, r1, r2) => {
annotated_binary_print("SEQ", r1, r2, bs)
}
case AALTS(bs, rs) => {
//elem("Awaiting completion")
annotated_list_print("ALT", rs, bs)
}
case ASTAR(bs, r) => {
annotated_list_print("STA", List(r), bs)
}
}
}
def aregx_tree(r: ARexp): Element = {
r match {
case ACHAR(bs, d) => {
//val Some(d) = alphabet.find(f)
d match {
case '\n' => elem("\\n")
case '\t' => elem("\\t")
case ' ' => elem("space")
case d => elem(d.toString)
}
}
case AONE(bs) => {
elem("ONE")
}
case AZERO => {
elem("ZERO")
}
case ASEQ(bs, r1, r2) => {
binary_print("SEQ", r1, r2)
}
case AALTS(bs, rs) => {
//elem("Awaiting completion")
list_print("ALT", rs)
}
case ASTAR(bs, r) => {
list_print("STA", List(r))
}
}
}
val port = elem(" └-")
def list_print(name: String, rs: List[ARexp]): Element = {
rs match {
case r::Nil => {
val pref = aregx_tree(r)
val head = elem(name)
(head left_align (port up_align pref) )
}
case r2::r1::Nil => {
binary_print(name, r2, r1)
}
case r::rs1 => {
val pref = aregx_tree(r)
val head = elem(name)
if (pref.height > 1){
val link = elem('|', 1, pref.height - 1)
(head left_align ((port above link) beside pref)) left_align tail_print(rs1)
}
else{
(head left_align (port beside pref) ) left_align tail_print(rs1)
}
}
}
}
def annotated_list_print(name: String, rs: List[ARexp], bs: List[Bit]): Element = {
rs match {
case r::Nil => {
val pref = annotated_tree(r)
val head = if(bs.isEmpty) elem(name) else elem(name ++ " ") beside elem(bs.toString)
(head left_align (port up_align pref) )
}
case r2::r1::Nil => {
annotated_binary_print(name, r2, r1, bs)
}
case r::rs1 => {
val pref = annotated_tree(r)
val head = if (bs.isEmpty) elem(name) else elem(name ++ " ") beside elem(bs.toString)
if (pref.height > 1){
val link = elem('|', 1, pref.height - 1)
(head left_align ((port above link) beside pref)) left_align annotated_tail_print(rs1)
}
else{
(head left_align (port beside pref) ) left_align annotated_tail_print(rs1)
}
}
}
}
def annotated_tail_print(rs: List[ARexp]): Element = {
rs match {
case r2::r1::Nil => {
val pref = annotated_tree(r2)
val suff = annotated_tree(r1)
if (pref.height > 1){
val link = elem('|', 1, pref.height - 1)
((port above link) beside pref) left_align (port up_align suff)
}
else{
(port beside pref) left_align (port up_align suff)
}
}
case r2::rs1 => {
val pref = annotated_tree(r2)
if (pref.height > 1){
val link = elem('|', 1, pref.height - 1)
((port above link) beside pref) left_align annotated_tail_print(rs1)//(port up_align tail_print(rs1) )
}
else{
(port beside pref) left_align annotated_tail_print(rs1)//(port up_align tail_print(rs1))
}
//pref left_align tail_print(rs1)
}
}
}
def tail_print(rs: List[ARexp]): Element = {
rs match {
case r2::r1::Nil => {
val pref = aregx_tree(r2)
val suff = aregx_tree(r1)
if (pref.height > 1){
val link = elem('|', 1, pref.height - 1)
((port above link) beside pref) left_align (port up_align suff)
}
else{
(port beside pref) left_align (port up_align suff)
}
}
case r2::rs1 => {
val pref = aregx_tree(r2)
if (pref.height > 1){
val link = elem('|', 1, pref.height - 1)
((port above link) beside pref) left_align tail_print(rs1)//(port up_align tail_print(rs1) )
}
else{
(port beside pref) left_align tail_print(rs1)//(port up_align tail_print(rs1))
}
//pref left_align tail_print(rs1)
}
}
}
def binary_print(name: String, r1: ARexp, r2: ARexp): Element = {
val pref = aregx_tree(r1)
val suff = aregx_tree(r2)
val head = elem(name)
if (pref.height > 1){
val link = elem('|', 1, pref.height - 1)
(head left_align ((port above link) beside pref) ) left_align (port up_align suff)
}
else{
(head left_align (port beside pref) ) left_align (port up_align suff)
}
}
def annotated_binary_print(name: String, r1: ARexp, r2: ARexp, bs: List[Bit]): Element = {
val pref = annotated_tree(r1)
val suff = annotated_tree(r2)
val head = if (bs.isEmpty) elem(name) else elem(name ++ " ") beside elem(bs.toString)
if (pref.height > 1){
val link = elem('|', 1, pref.height - 1)
(head left_align ((port above link) beside pref) ) left_align (port up_align suff)
}
else{
(head left_align (port beside pref) ) left_align (port up_align suff)
}
}
val arr_of_size = ListBuffer.empty[Int]
def pC(r: Rexp): Set[Rexp] = {//PD's companion
r match {
case SEQ(r1, r2) => pC(r2)
case ALTS(rs) => rs.flatMap(a => pC(a) ).toSet
case CHAR(c) => Set(r)
case r => Set()
}
}
def illustration(r: Rexp, s: String){
var i_like_imperative_style = internalise(r)
val all_chars = s.toList
for (i <- 0 to s.length - 1){
val der_res = bder(all_chars(i), i_like_imperative_style)
val simp_res = bsimp(der_res)
println("The original regex, the regex after derivative w.r.t " + all_chars(i) + " and the simplification of the derivative.")
println(aregx_tree(i_like_imperative_style) up_align aregx_tree(der_res) up_align aregx_tree(simp_res))
//println(asize(i_like_imperative_style), asize(der_res), asize(simp_res))
arr_of_size += asize(i_like_imperative_style)
//println(asize(simp_res), asize(simp_res) / arr_of_size(0) )
i_like_imperative_style = simp_res
}
arr_of_size += asize(i_like_imperative_style)
}
val ran = scala.util.Random
var alphabet_size = 3
def balanced_seq_star_gen(depth: Int, star: Boolean): Rexp = {
if(depth == 1){
((ran.nextInt(4) + 97).toChar).toString
}
else if(star){
STAR(balanced_seq_star_gen(depth - 1, false))
}
else{
SEQ(balanced_seq_star_gen(depth - 1, true), balanced_seq_star_gen(depth - 1, true))
}
}
def max(i: Int, j: Int): Int = {
if(i > j)
i
else
j
}
def random_struct_gen(depth:Int): Rexp = {
val dice = ran.nextInt(3)
val dice2 = ran.nextInt(3)
(dice, depth) match {
case (_, 0) => ((ran.nextInt(3) + 97).toChar).toString
case (0, i) => STAR(random_struct_gen(max(0, i - 1 - dice2)))
case (1, i) => SEQ(random_struct_gen(max(0, i - 1 - dice2)), random_struct_gen(max(0, i - 1 - dice2)))
case (2, i) => ALTS( List(random_struct_gen(max(0, i - 1 - dice2)), random_struct_gen(max(0, i - 1 - dice2))) )
}
}
def balanced_struct_gen(depth: Int): Rexp = {
val dice = ran.nextInt(3)
(dice, depth) match {
case (_, 0) => ((ran.nextInt(3) + 97).toChar).toString
case (0, i) => STAR(random_struct_gen(depth - 1))
case (1, i) => SEQ(random_struct_gen(depth - 1), random_struct_gen(depth - 1))
case (2, i) => ALTS( List(random_struct_gen(depth - 1), random_struct_gen(depth - 1) ) )
}
}
def random_pool(n: Int, d: Int) : Stream[Rexp] = n match {
case 0 => (for (i <- 1 to 10) yield balanced_struct_gen(d)).toStream
case n => {
val rs = random_pool(n - 1, d)
rs #:::
(for (i <- (1 to 10).toStream) yield balanced_struct_gen(d)) #:::
(for (i <- (1 to 10).toStream) yield random_struct_gen(d))
}
}
def rd_string_gen(alp_size: Int, len: Int): String = {
if( len > 0)
((ran.nextInt(alp_size) + 97).toChar).toString + rd_string_gen(alp_size, len - 1)
else
((ran.nextInt(alp_size) + 97).toChar).toString
}
def plot(b: List[Int]){
println(b(0),b.max)
}
def dep_exp(depth: List[Int]){
for(i <- depth){
arr_of_size.clear()
val s = rd_string_gen(alphabet_size, (i-8)*(i-8)+10)
val r = random_struct_gen(i)
println("depth: "+i)
illustration(r, s) //"abcabadaaadcabdbabcdaadbabbcbbdabdabbcbdbabdbcdb")
//println("depth: " + i + " general stats:"+ arr_of_size(0), arr_of_size.max, arr_of_size.max/arr_of_size(0))
//println("x y label alignment")
/*for(i <- 0 to s.length - 1){
if(s(i) == '\n')
println(i+" "+arr_of_size(i)+" "+"nl"+" -140")
else if(s(i) == ' ')
println(i+" "+arr_of_size(i)+" "+"sp"+" -140")
else
println(i+" "+arr_of_size(i)+" "+s(i)+" -140")
}*/
//println(s.length + " " + arr_of_size(s.length) + " ]" + " -140")
}
}
def case_study(ss: List[String], r: Rexp){
for(s <- ss){
arr_of_size.clear()
illustration(r, s)
println("x y label alignment")
for(i <- 0 to s.length - 1){
if(s(i) == '\n')
println(i+" "+arr_of_size(i)+" "+"nl"+" -140")
else if(s(i) == ' ')
println(i+" "+arr_of_size(i)+" "+"sp"+" -140")
else
println(i+" "+arr_of_size(i)+" "+s(i)+" -140")
}
}
}
def star_gen(dp: Int): Rexp = {
if(dp > 0)
STAR(star_gen(dp - 1))
else
"a"
}
def strs_gen(len: Int, num: Int): List[String] = {
if(num > 0){
rd_string_gen(3, len)::strs_gen(len, num - 1)
}
else{
Nil
}
}
def regx_print(r: Rexp): String = {
r match {
case ZERO =>
"ZERO"
case CHAR(c) => {
//val Some(c) = alphabet.find(f)
"\"" + c.toString + "\""
}
case ONE => {
"ONE"
}
case ALTS(rs) => {
"ALTS(List("+(rs.map(regx_print)).foldLeft("")((a, b) => if(a == "") b else a + "," + b)+"))"
}
case SEQ(r1, r2) => {
"SEQ(" + regx_print(r1) + "," + regx_print(r2) + ")"
}
case STAR(r) => {
"STAR(" + regx_print(r) + ")"
}
}
}
val mkst = "abcdefghijklmnopqrstuvwxyz"
def weak_sub_check(r: Rexp, s: String, i: Int, f: (List[Rexp], Set[Rexp]) => Boolean){
//we first compute pders over the set of all strings on the alphabet
val pd = pderas(Set(r), i + 4)
//then "b-internalise" the regular expression into a brexp(this is essentially
//attaching a bit Z to every alts to signify that they come from the original regular expression)
var old = brternalise(r)
//this is for comparison between normal simp and the weakened version of simp
//normal simp will be performed on syncold
//weakend simp will be performed on old
var syncold = internalise(r)
val all_chars = s.toList
for (i <- 0 to s.length - 1){
val syncder_res = bder(all_chars(i), syncold)
val syncsimp_res = super_bsimp(syncder_res)
//see brder for detailed explanation
//just changes bit Z to S when deriving an ALTS,
//signifying that the structure has been "touched" and
//therefore able to be spilled in the bspill function
val der_res = brder(all_chars(i), old)
val simp_res = br_simp(der_res)
val anatomy = bspill(simp_res)
//track if the number of regular expressions exceeds those in the PD set(remember PD means the pders over A*)
if(f(List(berase(simp_res)), pd) == false ){
println(size(erase(syncsimp_res)))
println(size(berase(simp_res)))
println(bregx_tree(simp_res))
println(s)
println(i)
println(r)
println(anatomy.map(size).sum)
println(pd.map(size).sum)
}
old = simp_res
syncold = syncsimp_res
}
}
def inclusion_truth(anatomy: List[Rexp], pd: Set[Rexp]): Boolean = {
val aset = anatomy.toSet
if(aset subsetOf pd){
true
}
else{
println("inclusion not true")
false
}
}
def size_comp(anatomy: List[Rexp], pd: Set[Rexp]):Boolean = {println("size of PD and bspilled simp regx: ", pd.size, anatomy.size); true}
def size_expansion_rate(r: List[Rexp], pd: Set[Rexp]): Boolean = if(size(r(0)) > (pd.map(size).sum) * 3 ) { false }else {true}
def ders_simp(r: ARexp, s: List[Char]): ARexp = {
s match {
case Nil => r
case c::cs => ders_simp(bsimp(bder(c, r)), cs)
}
}
val big_panda = STAR(STAR(STAR(ALTS(List(ALTS(List(CHAR('c'), CHAR('b'))), SEQ(CHAR('c'),CHAR('c')))))))
val str_panda = "ccccb"
def check_all(){
weak_sub_check(big_panda, str_panda, 6, size_expansion_rate)
}
def bstostick(bs: List[Bit]): Element = bs match {
//case b::Nil => elem(b.toString)
case b::bs1 => elem(b.toString) beside bstostick(bs1)
case Nil => elem(' ', 1, 1)
}
def bits_print(r: ARexp): Element = r match {
case AALTS(bs,rs) => {
val bitstick = bstostick(bs)
rs match {
case r::rs1 =>
rs1.foldLeft(
((elem("(") left_align bitstick) beside
bits_print(r)) )( (acc, r2) => acc beside ((elem(" + ") above elem(" ")) beside bits_print(r2) )) beside
elem(")")
case Nil => elem(' ', 1, 1)
}
}
case ASEQ(bs, r1, r2) => {
((elem("[") left_align bstostick(bs)) beside bits_print(r1) beside elem("~") beside bits_print(r2) beside (elem("]") above elem(" ")))
}
case ASTAR(bs, r) => {
r match {
case AONE(_) | AZERO | ACHAR(_, _) => {
(elem("{") left_align bstostick(bs)) beside (bits_print(r) beside elem("}*"))
}
case _ => {
(elem("{") left_align bstostick(bs)) beside (bits_print(r) beside elem("}*"))
}
}
}
case AONE(bs) => {
elem("1") left_align bstostick(bs)
}
case ACHAR(bs, c) => {
elem(c, 1, 1) left_align bstostick(bs)
}
case AZERO =>
{
elem ("0") above elem(" ")
}
}
def happy_print(r: Rexp): Unit = r match {
case ALTS( r::rs ) => {
print("(")
happy_print(r)
rs.map(r2=>{
print(" + ")
happy_print(r2)
})
print(")")
}
case SEQ(r1, r2) => {
happy_print(r1)
print("~")
happy_print(r2)
}
case STAR(r) => {
r match {
case ONE | ZERO | CHAR(_) => {
happy_print(r)
print("*")
}
case _ => {
print("[")
happy_print(r)
print("]*")
}
}
}
case ONE => {
print("1")
}
case ZERO => {
print("0")
}
case CHAR(c) =>{
print(c)
}
}
def bits_slide(s: String, r: Rexp){
val nangao = ders_simp(internalise(r), s.toList)
val easy = bsimp(bders(s.toList, internalise(r)))
println(s)
println(r)
happy_print(r)
println()
print(bits_print(nangao))
println()
print(bits_print(easy))
println()
}
//found r = SEQ(ALTS(List(CHAR(c), CHAR(a))),SEQ(ALTS(List(CHAR(a), CHAR(c))),ALTS(List(CHAR(b), CHAR(c))))) s = "aa"
def bsimp_print(r: ARexp): Unit = r match {
case ASEQ(bs, r1, r2) =>
{
println("0.r or r.0 to 0 or bs1 1.r to fuse bs++bs1 r")
bits_print(bsimp(r1))
bits_print(bsimp(r2))
}
case AALTS(bs, rs) => {
println("rs.map(bsimp) equals *************")
val rs_simp = rs.map(bsimp)
for(r <- rs_simp){
println(bits_print(r))
}
println("*************")
println("flts(rs_simp)")
val flat_res = flats(rs_simp)
for(r <- flat_res){
println(bits_print(r))
}
println("dB(flat_res)")
val dist_res = distinctBy(flat_res, erase)
for(r <- dist_res){
println(bits_print(r))
}
dist_res match {
case Nil => println("AZERO")
case r::Nil => println("fuse(bs, r)")
case rs => println("AALTS(bs, rs)")
}
}
case _ => println("No simp at this level")
}
def tellmewhy(){
//val r = SEQ(ALTS(List(CHAR('a'), CHAR('b'))),ALTS(List(ALTS(List(CHAR('a'), CHAR('a'))), STAR(CHAR('a')))))
//val r = SEQ(ALTS(List(CHAR('a'), CHAR('b'))),ALTS(List(CHAR('a'), STAR(CHAR('a')) ) ))
val r = ("ab" | ( (("a")%) | "aa") )
//val r = ("a"|"b")~("a")
val s = "aa"
for(i <- 0 to s.length-1){
val ss = s.slice(0, i+1)
val nangao = bders_simp_rf(ss.toList, internalise(r))
val easy = (bders(ss.toList, internalise(r)))
println(bits_print(nangao))
println()
println(bits_print(easy))
println()
println(bits_print(bsimp_rf(easy)))
println()
}
println(bits_print(bsimp(bders(s.toList, internalise(r)))))
println(bits_print(ders_simp(internalise(r), s.toList)))
}
def find_re(){
for (i <- 1 to 10000){
val r = balanced_struct_gen(3)
val s = rd_string_gen(2,1)
val nangao = ders_simp(internalise(r), s.toList)
val easy = bsimp(bders(s.toList, internalise(r)))
if(nangao != easy){
bits_slide(s, r)
}
}
}
//simplified regex size 291, so called pd_simp size 70 (did not do simplification to terms in the PD set)
def pushbits(r: ARexp): ARexp = r match {
case AALTS(bs, rs) => AALTS(Nil, rs.map(r=>fuse(bs, pushbits(r))))
case ASEQ(bs, r1, r2) => ASEQ(bs, pushbits(r1), pushbits(r2))
case r => r
}
def correctness_proof_convenient_path(){
for(i <- 1 to 19999){
val s = rd_string_gen(alphabet_size, 3)//"abaa"//rd_string_gen(alphabet_size, 3)
val r = internalise(random_struct_gen(4))//ASTAR(List(),AALTS(List(),List(ASTAR(List(Z),ACHAR(List(),'a')), ASEQ(List(S),ACHAR(List(),'a'),ACHAR(List(),'b')))))//internalise(balanced_struct_gen(3))//SEQ(ALTS(List(STAR("a"),ALTS(List("a","c")))),SEQ(ALTS(List("c","a")),ALTS(List("c","b")))) //random_struct_gen(7)
for(j <- 0 to s.length - 1){
val ss = s.slice(0, j+ 1)
val nangao = bders_simp_rf(ss.toList, r)
val easy = bsimp_rf(bders_rf(ss.toList, r))
if(!(nangao == easy)){
println(j)
println("not equal")
println("string")
println(ss)
println("original regex")
println(annotated_tree(r))
println("regex after ders simp")
println(annotated_tree(nangao))
println("regex after ders")
println(annotated_tree(bders(ss.toList, r)))//flats' fuse when opening up AALTS causes the difference
println("regex after ders and then a single simp")
println(annotated_tree(easy))
}
}
}
}
/* if(bts == cdbts){//test of equality code v = retrieve internalise(r) v if |- v : r
println(bts)
println(cdbts)
println("code v = retrieve internalise(r) v if |- v : r")
}
val r_der_s = bders(st.toList, rg)
println(aregx_tree(r_der_s))
val bts = retrieve(r_der_s, unsimplified_vl)
val cdbts = code(unsimplified_vl)
val simprg = bsimp(r_der_s)
val frectv = decode(erase(simprg), cdbts)
val simpbts = retrieve(simprg, frectv)
if(bts == simpbts){
println("retrieve r v = retrieve (bsimp r) (decode bsimp(r) code(v))")
println("bits:")
//println(bts)
println(simpbts)
println("v = ")
println(unsimplified_vl)
println("frect v = ")
println(frectv)
}
*///KH8W5BXL
def nice_lex(r: Rexp, s: List[Char], ar: ARexp) : Val = s match {
case Nil =>
if (nullable(r)){
val vr = mkeps(r)
val bits1 = retrieve(ar, vr)
val av = bsimp2(ar, vr)
val bits2 = retrieve(av._1, av._2)
if(bits1 != bits2) throw new Exception("bsimp2 does not work")
vr
}
else throw new Exception("Not matched")
case c::cs => {
val vr = inj(r, c, nice_lex(der(c, r), cs, bder(c, ar)));
val bits1 = retrieve(ar, vr);
val av = bsimp2(ar, vr);
val bits2 = retrieve(av._1, av._2);
if(bits1 != bits2) throw new Exception("bsimp2 does not work");
vr
}
}
def test_bsimp2(){
for(i <- 1 to 1000){
val rg = (balanced_struct_gen(9))//ASTAR(List(),AALTS(List(),List(ASTAR(List(Z),ACHAR(List(),'a')), ASEQ(List(S),ACHAR(List(),'a'),ACHAR(List(),'b')))))//internalise(balanced_struct_gen(3))//SEQ(ALTS(List(STAR("a"),ALTS(List("a","c")))),SEQ(ALTS(List("c","a")),ALTS(List("c","b"))))
val st = rd_string_gen(3, 4)
val a = internalise(rg)
val final_derivative = ders(st.toList, rg)
if(nullable(final_derivative))
nice_lex(rg, st.toList, a)
}
}
def neat_retrieve(){
for(i <- 1 to 1000){
val rg = internalise(balanced_struct_gen(6))//ASTAR(List(),AALTS(List(),List(ASTAR(List(Z),ACHAR(List(),'a')), ASEQ(List(S),ACHAR(List(),'a'),ACHAR(List(),'b')))))//internalise(balanced_struct_gen(3))//SEQ(ALTS(List(STAR("a"),ALTS(List("a","c")))),SEQ(ALTS(List("c","a")),ALTS(List("c","b"))))
val st = rd_string_gen(3, 5)
val final_derivative = ders(st.toList, erase(rg))
if(nullable(final_derivative)){
val unsimplified_vl = mkeps(final_derivative)
val arexp_for_retrieve = bders( st.toList, rg)
val simp_ar_vl = bsimp2(arexp_for_retrieve, unsimplified_vl)
val bits1 = retrieve(arexp_for_retrieve, unsimplified_vl)
val bits2 = retrieve(simp_ar_vl._1, simp_ar_vl._2)
if(bits1 != bits2){
println("nOOOOOOOOOO!")
}
}
}
}
def radical_correctness(){
enum(3, "abc").map(tests_blexer_simp(strs(3, "abc"))).toSet
random_pool(1, 5).map(tests_blexer_simp(strs(5, "abc"))).toSet
}
def christian_def(){
val r = ALTS(List(SEQ(ZERO,CHAR('b')), ONE))
val v = Right(Empty)
val a = internalise(r)
val a_v = bsimp2(a,v)
println(s"Testing ${r} and ${v}")
println(s"internalise(r) = ${a}")
println(s"a_v = ${a_v}")
val bs1 = retrieve(a, v)
println(bs1)
println(s"as = ${a_v._1}")
//val bs2 = retrieve(as, decode(erase(as), bs1))
val bs3 = retrieve(a_v._1, a_v._2)//decode(erase(as), bs1) does not work
//println(decode(erase(as), bs1))
println(s"bs1=${bs1}, bs3=${bs3}")
//println(decode(erase(a_v._1), bs3))
}
def christian_def2(){
val a = AALTS(List(S), List(AZERO, ASEQ(List(S), AALTS(List(S), List(AONE(List(S)), ACHAR(List(S), 'c'))), ACHAR(List(S),'c') )) )
//AALTS(List(Z), List(AZERO, ASEQ(List(), AALTS(List(),List(AONE(List()), ACHAR(Nil, 'b'))), ACHAR(Nil, 'b')) ) )
val unsimp = bsimp(bder('c',a))
val simped = bsimp(bder('c', bsimp(a)) )
println(bsimp(a))
if(unsimp != simped){
println(s"bsimp(bder c r) = ${unsimp}, whereas bsimp(bder c bsimp r) = ${simped}")
}
}
def essence_posix(){
//val s = "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"//rd_string_gen(alphabet_size, 3)//"abaa"//rd_string_gen(alphabet_size, 3)
val s0 = "a"
val r = SEQ(STAR(ALT("a", "aa")), "b")//internalise(random_struct_gen(4))//ASTAR(List(),AALTS(List(),List(ASTAR(List(Z),ACHAR(List(),'a')), ASEQ(List(S),ACHAR(List(),'a'),ACHAR(List(),'b')))))//internalise(balanced_struct_gen(3))//SEQ(ALTS(List(STAR("a"),ALTS(List("a","c")))),SEQ(ALTS(List("c","a")),ALTS(List("c","b")))) //random_struct_gen(7)
for(i <- 1 to 40){
val s = s0*i
//printf("%d %d\n",i, size(ders(s.toList, r)))
printf("%d %d\n",i, asize(ders_simp( internalise(r), s.toList)))
//println(asize(ders_simp( internalise(r), s.toList)))
}
}
def speed_test(){
val s0 = "a"*1000
val r = SEQ(STAR("a"), "b")
for(i <- 1 to 30){
val s = s0*i
val start = System.nanoTime()
try{
blex_simp(internalise(r), s.toList)
}
catch{
case x: Exception =>
}
val end = System.nanoTime()
printf("%d %f\n",i, (end - start)/1.0e9)
}
}
/*
lemma retrieve_encode_STARS:
assumes "∀v∈set vs. ⊨ v : r ∧ code v = retrieve (intern r) v"
shows "code (Stars vs) = retrieve (ASTAR [] (intern r)) (Stars vs)"
*/
def retrieve_encode_STARS(){
val r = ALT(CHAR('a'), SEQ(CHAR('a'),CHAR('b')) )
//val v = Stars(List(Sequ(Chr('a'), Chr('b')), Chr('a')) )
val v1 = Right(Sequ(Chr('a'), Chr('b')))
val v2 = Left(Chr('a'))
val compressed1 = code(v1)
val compressed2 = code(v2)
val xompressed1 = retrieve(internalise(r), v1)
val xompressed2 = retrieve(internalise(r), v2)
println(compressed1, compressed2, xompressed1, xompressed2)
val v = Stars(List(v1, v2))
val compressed = code(v)
val a = ASTAR(List(), internalise(r))
val xompressed = retrieve(a, v)
println(compressed, xompressed)
}
//what does contains7 do?
//it causes exception
//relation between retreive, bder and injection
// a match error occurs when doing the injection
def contains7(){
val r = STAR( SEQ(CHAR('a'),CHAR('b')) )
val v = Sequ(Chr('b'), Stars(List(Sequ(Chr('a'), Chr('b')))))
val a = internalise(r)
val c = 'a'
val v_aug = inj(r, c, v)
println("bder c r:")
println(bder(c, a))
println("r:")
println(a)
println("bits they can both produce:")
println(retrieve(a, v_aug))
}
def der_seq(r:ARexp, s: List[Char],acc: List[ARexp]) : List[ARexp] = s match{
case Nil => acc ::: List(r)
case c::cs => der_seq(bder(c, r), cs, acc ::: List(r))
}
def der_seq_rev(r:ARexp, s: List[Char], acc: List[ARexp]): List[ARexp] = s match{
case Nil => r::acc
case c::cs =>der_seq_rev(r, cs, bders(s, r) :: acc )
}
def re_close(l1: List[ARexp], l2: List[ARexp], re_init: ARexp): ARexp = l1 match {
case Nil => re_init
case c::cs => if(bnullable(c)) re_close(cs, l2.tail, AALTS(List(), List(re_init, fuse(mkepsBC(c), l2.head)) ) )
else re_close(cs, l2.tail, re_init)
}
//HERE
def closed_string_der(r1: ARexp, r2: ARexp, s: String): ARexp = {
val l1 = der_seq(r1, s.toList, Nil)
val l2 = der_seq_rev(r2, s.toList, Nil)
val Re = re_close((l1.reverse).tail, l2.tail, ASEQ(List(), l1.last, l2.head))
print(Re)
val Comp = bders( s.toList, ASEQ(List(), r1, r2))
print(Comp )
if(Re != Comp){
println("boooooooooooooooo!joihniuguyfuyftyftyufuyids gheioueghrigdhxilj")
}
Re
}
def newxp1(){
val r1 = internalise("ab"|"")
val r2 = internalise(("b")%)
val s = "abbbbb"
val s2= "bbbbb"
val s3 = "aaaaaa"
//closed_string_der(r1, r2, s)
//closed_string_der(r1, r2, s2)
closed_string_der(r1, r2, s3)
}
def string_der_test(){
for(i <- 0 to 10){
val s = rd_string_gen(alphabet_size, i).toList
val r = random_struct_gen(2)
if(ders(s, r) != ders2(s, r)){
println(i)
println(s)
println(r)
println(ders(s, r))
println(ders2(s,r))
println("neq")
}
}
}
def have_fun(){
val bis = List(S,S)
val bits = List(S,S,Z)
val reg = ("a" | (("a")%) )~("b")
val res = decode_aux(reg, bis)
val result = decode_aux(reg, bis)
val result1 = decode_aux(reg, List(Z))
println(res)
println(result)
println(bsimp(bders( "a".toList, internalise(reg))))
println(result1)
}
def main(args: Array[String]) {
//println(S.toString)
//find_re()
//tellmewhy()
//correctness_proof_convenient_path()
//tellmewhy()
have_fun()
//string_der_test()
//comp(rd_string_gen(3,6).toList, random_struct_gen(7))
//newxp1()
//contains7()
//retrieve_encode_STARS()
//check_all()
//radical_correctness()
//correctness_proof_convenient_path()
//retrieve_experience()
//neat_retrieve()
//test_bsimp2()
//christian_def2()
//christian_def()
//essence_posix()
//speed_test()
}
}
//List( ASTAR(List(Z),ACHAR(List(),a)), AALTS(List(S),List(ACHAR(List(Z),b), ACHAR(List(S),a))) )