random test failed
on the new simplification function. ("super_blexing_simp")
import Element.elem
import RexpRelated._
import RexpRelated.Rexp._
import Partial._
import BRexp._
import scala.collection.mutable.ListBuffer
object Spiral{
val space = elem(" ")
val corner = elem("+")
def spiral(nEdges: Int, direction: Int): Element = {
if(nEdges == 1)
elem("+")
else {
val sp = spiral(nEdges - 1, (direction + 3) % 4)
def verticalBar = elem('|', 1, sp.height)
def horizontalBar = elem('-', sp.width, 1)
if(direction == 0)
(corner beside horizontalBar) above sp//(sp beside space)
else if (direction == 1)
sp beside (corner above verticalBar)
else if (direction == 2)
(space beside sp) above (horizontalBar beside corner)
else
(verticalBar above corner) beside (space above sp)
}
}
val alphabet = ("""abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789.:"=()\;-+*!<>\/%{} """+"\n\t").toSet//Set('a','b','c')
def bregx_tree(r: BRexp): Element = regx_tree(berase(r))
def regx_tree(r: Rexp): Element = aregx_tree(internalise(r))
def annotated_tree(r: ARexp): Element = {
r match {
case ACHAR(bs, d) => {
//val Some(d) = alphabet.find(f)
d match {
case '\n' => elem("\\n")
case '\t' => elem("\\t")
case ' ' => elem("space")
case d => elem(d.toString)
}
}
case AONE(bs) => {
elem("ONE")
}
case AZERO => {
elem("ZERO")
}
case ASEQ(bs, r1, r2) => {
binary_print("SEQ", r1, r2)
}
case AALTS(bs, rs) => {
//elem("Awaiting completion")
list_print("ALT", rs)
}
case ASTAR(bs, r) => {
list_print("STA", List(r))
}
}
}
def aregx_tree(r: ARexp): Element = {
r match {
case ACHAR(bs, d) => {
//val Some(d) = alphabet.find(f)
d match {
case '\n' => elem("\\n")
case '\t' => elem("\\t")
case ' ' => elem("space")
case d => elem(d.toString)
}
}
case AONE(bs) => {
elem("ONE")
}
case AZERO => {
elem("ZERO")
}
case ASEQ(bs, r1, r2) => {
binary_print("SEQ", r1, r2)
}
case AALTS(bs, rs) => {
//elem("Awaiting completion")
list_print("ALT", rs)
}
case ASTAR(bs, r) => {
list_print("STA", List(r))
}
}
}
val port = elem(" └-")
def list_print(name: String, rs: List[ARexp]): Element = {
rs match {
case r::Nil => {
val pref = aregx_tree(r)
val head = elem(name)
(head left_align (port up_align pref) )
}
case r2::r1::Nil => {
binary_print(name, r2, r1)
}
case r::rs1 => {
val pref = aregx_tree(r)
val head = elem(name)
if (pref.height > 1){
val link = elem('|', 1, pref.height - 1)
(head left_align ((port above link) beside pref)) left_align tail_print(rs1)
}
else{
(head left_align (port beside pref) ) left_align tail_print(rs1)
}
}
}
}
def tail_print(rs: List[ARexp]): Element = {
rs match {
case r2::r1::Nil => {
val pref = aregx_tree(r2)
val suff = aregx_tree(r1)
if (pref.height > 1){
val link = elem('|', 1, pref.height - 1)
((port above link) beside pref) left_align (port up_align suff)
}
else{
(port beside pref) left_align (port up_align suff)
}
}
case r2::rs1 => {
val pref = aregx_tree(r2)
if (pref.height > 1){
val link = elem('|', 1, pref.height - 1)
((port above link) beside pref) left_align tail_print(rs1)//(port up_align tail_print(rs1) )
}
else{
(port beside pref) left_align tail_print(rs1)//(port up_align tail_print(rs1))
}
//pref left_align tail_print(rs1)
}
}
}
def binary_print(name: String, r1: ARexp, r2: ARexp): Element = {
val pref = aregx_tree(r1)
val suff = aregx_tree(r2)
val head = elem(name)
if (pref.height > 1){
val link = elem('|', 1, pref.height - 1)
(head left_align ((port above link) beside pref) ) left_align (port up_align suff)
}
else{
(head left_align (port beside pref) ) left_align (port up_align suff)
}
}
val arr_of_size = ListBuffer.empty[Int]
def pC(r: Rexp): Set[Rexp] = {//PD's companion
r match {
case SEQ(r1, r2) => pC(r2)
case ALTS(rs) => rs.flatMap(a => pC(a) ).toSet
case CHAR(c) => Set(r)
case r => Set()
}
}
def illustration(r: Rexp, s: String){
var i_like_imperative_style = internalise(r)
val all_chars = s.toList
for (i <- 0 to s.length - 1){
val der_res = bder(all_chars(i), i_like_imperative_style)
val simp_res = bsimp(der_res)
println("The original regex, the regex after derivative w.r.t " + all_chars(i) + " and the simplification of the derivative.")
println(aregx_tree(i_like_imperative_style) up_align aregx_tree(der_res) up_align aregx_tree(simp_res))
//println(asize(i_like_imperative_style), asize(der_res), asize(simp_res))
arr_of_size += asize(i_like_imperative_style)
//println(asize(simp_res), asize(simp_res) / arr_of_size(0) )
i_like_imperative_style = simp_res
}
arr_of_size += asize(i_like_imperative_style)
}
val ran = scala.util.Random
var alphabet_size = 3
def balanced_seq_star_gen(depth: Int, star: Boolean): Rexp = {
if(depth == 1){
((ran.nextInt(4) + 97).toChar).toString
}
else if(star){
STAR(balanced_seq_star_gen(depth - 1, false))
}
else{
SEQ(balanced_seq_star_gen(depth - 1, true), balanced_seq_star_gen(depth - 1, true))
}
}
def max(i: Int, j: Int): Int = {
if(i > j)
i
else
j
}
def random_struct_gen(depth:Int): Rexp = {
val dice = ran.nextInt(3)
val dice2 = ran.nextInt(3)
(dice, depth) match {
case (_, 0) => ((ran.nextInt(3) + 97).toChar).toString
case (0, i) => STAR(random_struct_gen(max(0, i - 1 - dice2)))
case (1, i) => SEQ(random_struct_gen(max(0, i - 1 - dice2)), random_struct_gen(max(0, i - 1 - dice2)))
case (2, i) => ALTS( List(random_struct_gen(max(0, i - 1 - dice2)), random_struct_gen(max(0, i - 1 - dice2))) )
}
}
def balanced_struct_gen(depth: Int): Rexp = {
val dice = ran.nextInt(3)
(dice, depth) match {
case (_, 0) => ((ran.nextInt(3) + 97).toChar).toString
case (0, i) => STAR(random_struct_gen(depth - 1))
case (1, i) => SEQ(random_struct_gen(depth - 1), random_struct_gen(depth - 1))
case (2, i) => ALTS( List(random_struct_gen(depth - 1), random_struct_gen(depth - 1) ) )
}
}
def random_pool(n: Int, d: Int) : Stream[Rexp] = n match {
case 0 => (for (i <- 1 to 10) yield balanced_struct_gen(d)).toStream
case n => {
val rs = random_pool(n - 1, d)
rs #:::
(for (i <- (1 to 10).toStream) yield balanced_struct_gen(d)) #:::
(for (i <- (1 to 10).toStream) yield random_struct_gen(d))
}
}
def rd_string_gen(alp_size: Int, len: Int): String = {
if( len > 0)
((ran.nextInt(alp_size) + 97).toChar).toString + rd_string_gen(alp_size, len - 1)
else
((ran.nextInt(alp_size) + 97).toChar).toString
}
def plot(b: List[Int]){
println(b(0),b.max)
}
def dep_exp(depth: List[Int]){
for(i <- depth){
arr_of_size.clear()
val s = rd_string_gen(alphabet_size, (i-8)*(i-8)+10)
val r = random_struct_gen(i)
println("depth: "+i)
illustration(r, s) //"abcabadaaadcabdbabcdaadbabbcbbdabdabbcbdbabdbcdb")
//println("depth: " + i + " general stats:"+ arr_of_size(0), arr_of_size.max, arr_of_size.max/arr_of_size(0))
//println("x y label alignment")
/*for(i <- 0 to s.length - 1){
if(s(i) == '\n')
println(i+" "+arr_of_size(i)+" "+"nl"+" -140")
else if(s(i) == ' ')
println(i+" "+arr_of_size(i)+" "+"sp"+" -140")
else
println(i+" "+arr_of_size(i)+" "+s(i)+" -140")
}*/
//println(s.length + " " + arr_of_size(s.length) + " ]" + " -140")
}
}
def case_study(ss: List[String], r: Rexp){
for(s <- ss){
arr_of_size.clear()
illustration(r, s)
println("x y label alignment")
for(i <- 0 to s.length - 1){
if(s(i) == '\n')
println(i+" "+arr_of_size(i)+" "+"nl"+" -140")
else if(s(i) == ' ')
println(i+" "+arr_of_size(i)+" "+"sp"+" -140")
else
println(i+" "+arr_of_size(i)+" "+s(i)+" -140")
}
}
}
def star_gen(dp: Int): Rexp = {
if(dp > 0)
STAR(star_gen(dp - 1))
else
"a"
}
def strs_gen(len: Int, num: Int): List[String] = {
if(num > 0){
rd_string_gen(3, len)::strs_gen(len, num - 1)
}
else{
Nil
}
}
def regx_print(r: Rexp): String = {
r match {
case ZERO =>
"ZERO"
case CHAR(c) => {
//val Some(c) = alphabet.find(f)
"\"" + c.toString + "\""
}
case ONE => {
"ONE"
}
case ALTS(rs) => {
"ALTS(List("+(rs.map(regx_print)).foldLeft("")((a, b) => if(a == "") b else a + "," + b)+"))"
}
case SEQ(r1, r2) => {
"SEQ(" + regx_print(r1) + "," + regx_print(r2) + ")"
}
case STAR(r) => {
"STAR(" + regx_print(r) + ")"
}
}
}
val mkst = "abcdefghijklmnopqrstuvwxyz"
def weak_sub_check(r: Rexp, s: String, i: Int, f: (List[Rexp], Set[Rexp]) => Boolean){
//we first compute pders over the set of all strings on the alphabet
val pd = pderas(Set(r), i + 4)
//then "b-internalise" the regular expression into a brexp(this is essentially
//attaching a bit Z to every alts to signify that they come from the original regular expression)
var old = brternalise(r)
//this is for comparison between normal simp and the weakened version of simp
//normal simp will be performed on syncold
//weakend simp will be performed on old
var syncold = internalise(r)
val all_chars = s.toList
for (i <- 0 to s.length - 1){
val syncder_res = bder(all_chars(i), syncold)
val syncsimp_res = super_bsimp(syncder_res)
//see brder for detailed explanation
//just changes bit Z to S when deriving an ALTS,
//signifying that the structure has been "touched" and
//therefore able to be spilled in the bspill function
val der_res = brder(all_chars(i), old)
val simp_res = br_simp(der_res)
val anatomy = bspill(simp_res)
//track if the number of regular expressions exceeds those in the PD set(remember PD means the pders over A*)
if(f(List(berase(simp_res)), pd) == false ){
println(size(erase(syncsimp_res)))
println(size(berase(simp_res)))
println(bregx_tree(simp_res))
println(s)
println(i)
println(r)
println()
println(anatomy.map(size).sum)
println(pd.map(size).sum)
}
old = simp_res
syncold = syncsimp_res
}
}
def inclusion_truth(anatomy: List[Rexp], pd: Set[Rexp]): Boolean = {
val aset = anatomy.toSet
if(aset subsetOf pd){
true
}
else{
println("inclusion not true")
false
}
}
def size_comp(anatomy: List[Rexp], pd: Set[Rexp]):Boolean = {println("size of PD and bspilled simp regx: ", pd.size, anatomy.size); true}
def size_expansion_rate(r: List[Rexp], pd: Set[Rexp]): Boolean = if(size(r(0)) > (pd.map(size).sum) * 3 ) { false }else {true}
def ders_simp(r: ARexp, s: List[Char]): ARexp = {
s match {
case Nil => r
case c::cs => ders_simp(bsimp(bder(c, r)), cs)
}
}
val big_panda = STAR(STAR(STAR(ALTS(List(ALTS(List(CHAR('c'), CHAR('b'))), SEQ(CHAR('c'),CHAR('c')))))))
val str_panda = "ccccb"
def check_all(){
weak_sub_check(big_panda, str_panda, 6, size_expansion_rate)
}
//simplified regex size 291, so called pd_simp size 70 (did not do simplification to terms in the PD set)
def correctness_proof_convenient_path(){
for(i <- 1 to 1)
{
val s = "abaa"//rd_string_gen(alphabet_size, 3)
val r = ASTAR(List(),AALTS(List(),List(ASTAR(List(Z),ACHAR(List(),'a')), ASEQ(List(S),ACHAR(List(),'a'),ACHAR(List(),'b')))))//internalise(balanced_struct_gen(3))//SEQ(ALTS(List(STAR("a"),ALTS(List("a","c")))),SEQ(ALTS(List("c","a")),ALTS(List("c","b")))) //random_struct_gen(7)
for(j <- 0 to s.length - 1){
val ss = s.slice(0, j+ 1)
val nangao = ders_simp(r, ss.toList)
val easy = bsimp(bders(ss.toList, r))
if(true){
println(j)
if(j == 3) println("not equal")
println("string")
println(ss)
println("original regex")
println(r)
println("regex after ders simp")
println(nangao)
println("regex after ders")
println(bders(ss.toList, r))
println("regex after ders and then a single simp")
println(easy)
}
}
}
}
def main(args: Array[String]) {
//check_all()
//enum(3, "abc").map(tests_blexer_simp(strs(3, "abc"))).toSet
//
random_pool(1, 5).map(tests_blexer_simp(strs(5, "abc"))).toSet
//correctness_proof_convenient_path()
}
}