added the cloudfare eg.
import RexpRelated._
import RexpRelated.Rexp._
import Spiral._
import scala.collection.mutable.ArrayBuffer
abstract class BRexp
case object BZERO extends BRexp
case object BONE extends BRexp
case class BCHAR(c: Char) extends BRexp
case class BALTS(b: Bit, rs: List[BRexp]) extends BRexp
case class BSEQ(r1: BRexp, r2: BRexp) extends BRexp
case class BSTAR(r: BRexp) extends BRexp
object BRexp{
def brternalise(r: Rexp) : BRexp = r match {//remember the initial shadowed bit should be set to Z as there
//are no enclosing STAR or SEQ
case ZERO => BZERO
case ONE => BONE
case CHAR(c) => BCHAR(c)
case ALTS(rs) => BALTS(Z, rs.map(brternalise))
case SEQ(r1, r2) => BSEQ( brternalise(r1), brternalise(r2) )
case STAR(r) => BSTAR(brternalise(r))
case RECD(x, r) => brternalise(r)
}
def brnullable (r: BRexp) : Boolean = r match {
case BZERO => false
case BONE => true
case BCHAR(_) => false
case BALTS(bs, rs) => rs.exists(brnullable)
case BSEQ(r1, r2) => brnullable(r1) && brnullable(r2)
case BSTAR(_) => true
}
//this function tells bspill when converting a brexp into a list of rexps
//the conversion : (a+b)*c -> {a*c, b*c} can only happen when a+b is generated from scratch (e.g. when deriving a seq)
//or is from the original regex but have been "touched" (i.e. have been derived)
//Why make this distinction? Look at the following example:
//r = (c+cb)+c(a+b)
// r\c = (1+b)+(a+b)
//after simplification
// (r\c)simp= 1+b+a
//we lost the structure that tells us 1+b should be grouped together and a grouped as itself
//however in our brexp simplification,
//(r\c)br_simp = 1+b+(a+b)
//we do not allow the bracket to be opened as it is from the original expression and have not been touched
def brder(c: Char, r: BRexp) : BRexp = r match {
case BZERO => BZERO
case BONE => BZERO
case BCHAR(d) => if (c == d) BONE else BZERO
case BALTS(bs, rs) => BALTS(S, rs.map(brder(c, _)))//After derivative: Splittable in the sense of PD
case BSEQ(r1, r2) =>
if (brnullable(r1)) BALTS(S, List(BSEQ(brder(c, r1), r2), brder(c, r2) ) )//in r1\c~r2 r2's structure is maintained together with its splittablility bit
else BSEQ(brder(c, r1), r2)
case BSTAR(r) => BSEQ(brder(c, r), BSTAR(r))
}
def bflat(rs: List[BRexp]): List[BRexp] = {
rs match {
case Nil => Nil//TODO: Look at this! bs should have been exhausted one bit earlier.
case BZERO :: rs1 => bflat(rs1)
case BALTS(S, rs1) :: rs2 => rs1 ::: bflat(rs2)
case BALTS(Z, rs1) :: rs2 => BALTS(Z, rs1) :: bflat(rs2)
case r1 :: rs2 => r1 :: bflat(rs2)
}
}
def stflat(rs: List[BRexp]): List[BRexp] = {
//println("bs: " + bs + "rs: "+ rs + "length of bs, rs" + bs.length + ", " + rs.length)
//assert(bs.length == rs.length - 1 || bs.length == rs.length)//bs == Nil, rs == Nil May add early termination later.
rs match {
case Nil => Nil//TODO: Look at this! bs should have been exhausted one bit earlier.
case BZERO :: rs1 => bflat(rs1)
case BALTS(_, rs1) :: rs2 => rs1 ::: bflat(rs2)
case r1 :: rs2 => r1 :: bflat(rs2)
}
}
def berase(r:BRexp): Rexp = r match{
case BZERO => ZERO
case BONE => ONE
case BCHAR(f) => CHAR(f)
case BALTS(bs, rs) => ALTS(rs.map(berase(_)))
case BSEQ(r1, r2) => SEQ (berase(r1), berase(r2))
case BSTAR(r)=> STAR(berase(r))
}
def br_simp(r: BRexp): BRexp = r match {
case BSEQ(r1, r2) => (br_simp(r1), br_simp(r2)) match {
case (BZERO, _) => BZERO
case (_, BZERO) => BZERO
case (BONE, r2s) => r2s
case (r1s, r2s) => BSEQ(r1s, r2s)
}
case BALTS(bs, rs) => {
//assert(bs.length == rs.length - 1)
val dist_res = if(bs == S) {//all S
val rs_simp = rs.map(br_simp)
val flat_res = bflat(rs_simp)
distinctBy(flat_res, berase)
}
else{//not allowed to simplify (all Z)
rs
}
dist_res match {
case Nil => {BZERO}
case s :: Nil => { s}
case rs => {BALTS(bs, rs)}
}
}
//case BSTAR(r) => BSTAR(r)
case r => r
}
def strong_br_simp(r: BRexp): BRexp = r match {
case BSEQ(r1, r2) => (strong_br_simp(r1), strong_br_simp(r2)) match {
case (BZERO, _) => BZERO
case (_, BZERO) => BZERO
case (BONE, r2s) => r2s
case (r1s, r2s) => BSEQ(r1s, r2s)
}
case BALTS(bs, rs) => {
//assert(bs.length == rs.length - 1)
val dist_res = {//all S
val rs_simp = rs.map(strong_br_simp)
val flat_res = stflat(rs_simp)
distinctBy(flat_res, berase)
}
dist_res match {
case Nil => {BZERO}
case s :: Nil => { s}
case rs => {BALTS(bs, rs)}
}
}
case BSTAR(r) => BSTAR(strong_br_simp(r))
case r => r
}
//we want to bound the size by a function bspill s.t.
//bspill(ders_simp(r,s)) ⊂ PD(r)
//and bspill is size-preserving (up to a constant factor)
//so we bound |ders_simp(r,s)| by |PD(r)|
//where we already have a nice bound for |PD(r)|: t^2*n^2 in Antimirov's paper
//the function bspill converts a brexp into a list of rexps
//the conversion mainly about this: (r1+r2)*r3*r4*.....rn -> {r1*r3*r4*....rn, r2*r3*r4*.....rn}
//but this is not always allowed
//sometimes, we just leave the expression as it is:
//eg1: (a+b)*c -> {(a+b)*c}
//eg2: r1+r2 -> {r1+r2} instead of {r1, r2}
//why?
//if we always return {a, b} when we encounter a+b, the property
//bspill(ders_simp(r,s)) ⊂ PD(r)
//does not always hold
//for instance
//if we call the bspill that always returns {r1, r2} when encountering r1+r2 "bspilli"
//then bspilli( ders_simp( (c+cb)+c(a+b), c ) ) == bspilli(1+b+a) = {1, b, a}
//However the letter a does not belong to PD( (c+cb)+c(a+b) )
//then we can no longer say ders_simp(r,s)'s size is bounded by PD(r) because the former contains something the latter does not have
//In order to make sure the inclusion holds, we have to find out why new terms appeared in the bspilli set that don't exist in the PD(r) set
//Why a does not belong to PD((c+cb)+c(a+b))?
//PD(r1+r2) = PD(r1) union PD(r2) => PD((c+cb)+c(a+b)) = PD(c+cb) union PD(c(a+b))
//So the only possibility for PD to include a must be in the latter part of the regex, namely, c(a+b)
//we have lemma that PD(r) = union of pders(s, r) where s is taken over all strings whose length does not exceed depth(r)
//so PD(r) ⊂ pder(empty_string, r) union pder(c, r) union pder(ca, r) union pder(cb, r) where r = c(a+b)
//RHS = {1} union pder(c, c(a+b))
//Observe that pder(c, c(a+b)) == {a+b}
//a and b are together, from the original regular expression (c+cb)+c(a+b).
//but by our simplification, we first flattened this a+b into the same level with 1+b, then
//removed duplicates of b, thereby destroying the structure in a+b and making this term a, instead of a+b
//But in PD(r) we only have a+b, no a
//one ad hoc solution might be to try this bspill(ders_simp(r,s)) ⊂ PD(r) union {all letters}
//But this does not hold either according to experiment.
//So we need to make sure the structure r1+r2 is not simplified away if it is from the original expression
def bspill(r: BRexp): List[Rexp] = {
r match {
case BALTS(b, rs) => {
if(b == S)
rs.flatMap(bspill)
else
List(ALTS(rs.map(berase)))
}
case BSEQ(r2, r3) => bspill(r2).map( a => if(a == ONE) berase(r3) else SEQ(a, berase(r3)) )
case BZERO => List()
case r => List(berase(r))
}
}
}