found the difference: caused by flats
in ders_simp, the alts is at top most level , so no fuse and bits stay at the alts level
whereas in ders + singele simp, the alts that should be the final top-level alts is not at the topmost level initially before simplification
so it is opened up and bits fused. later it finds out itself the top level only aalts remaining, but the fuse is not reversible
we do not know what happened either.
package RexpRelated
import scala.language.implicitConversions
import scala.language.reflectiveCalls
import scala.annotation.tailrec
import scala.util.Try
abstract class Bit
case object Z extends Bit
case object S extends Bit
case class C(c: Char) extends Bit
abstract class Rexp
case object ZERO extends Rexp
case object ONE extends Rexp
case class CHAR(c: Char) extends Rexp
case class ALTS(rs: List[Rexp]) extends Rexp
case class SEQ(r1: Rexp, r2: Rexp) extends Rexp
case class STAR(r: Rexp) extends Rexp
case class RECD(x: String, r: Rexp) extends Rexp
object Rexp{
type Bits = List[Bit]
// abbreviations
type Mon = (Char, Rexp)
type Lin = Set[Mon]
def ALT(r1: Rexp, r2: Rexp) = ALTS(List(r1, r2))
def PLUS(r: Rexp) = SEQ(r, STAR(r))
def AALT(bs: Bits, r1: ARexp, r2: ARexp) = AALTS(bs, List(r1, r2))
def distinctBy[B, C](xs: List[B], f: B => C, acc: List[C] = Nil): List[B] = xs match {
case Nil => Nil
case (x::xs) => {
val res = f(x)
if (acc.contains(res)) distinctBy(xs, f, acc)
else x::distinctBy(xs, f, res::acc)
}
}
// some convenience for typing in regular expressions
def charlist2rexp(s : List[Char]): Rexp = s match {
case Nil => ONE
case c::Nil => CHAR(c)
case c::s => SEQ(CHAR(c), charlist2rexp(s))
}
implicit def string2rexp(s : String) : Rexp = charlist2rexp(s.toList)
implicit def RexpOps(r: Rexp) = new {
def | (s: Rexp) = ALT(r, s)
def % = STAR(r)
def ~ (s: Rexp) = SEQ(r, s)
}
implicit def stringOps(s: String) = new {
def | (r: Rexp) = ALT(s, r)
def | (r: String) = ALT(s, r)
def % = STAR(s)
def ~ (r: Rexp) = SEQ(s, r)
def ~ (r: String) = SEQ(s, r)
def $ (r: Rexp) = RECD(s, r)
}
// translation into ARexps
def fuse(bs: Bits, r: ARexp) : ARexp = r match {
case AZERO => AZERO
case AONE(cs) => AONE(bs ++ cs)
case ACHAR(cs, f) => ACHAR(bs ++ cs, f)
case AALTS(cs, rs) => AALTS(bs ++ cs, rs)
case ASEQ(cs, r1, r2) => ASEQ(bs ++ cs, r1, r2)
case ASTAR(cs, r) => ASTAR(bs ++ cs, r)
}
def internalise(r: Rexp) : ARexp = r match {
case ZERO => AZERO
case ONE => AONE(Nil)
case CHAR(c) => ACHAR(Nil, c)
case ALTS(List(r1, r2)) =>
AALTS(Nil, List(fuse(List(Z), internalise(r1)), fuse(List(S), internalise(r2))))
case ALTS(r1::rs) => {
val AALTS(Nil, rs2) = internalise(ALTS(rs))
AALTS(Nil, fuse(List(Z), internalise(r1)) :: rs2.map(fuse(List(S), _)))
}
case SEQ(r1, r2) => ASEQ(Nil, internalise(r1), internalise(r2))
case STAR(r) => ASTAR(Nil, internalise(r))
case RECD(x, r) => internalise(r)
}
internalise(("a" | "ab") ~ ("b" | ""))
def decode_aux(r: Rexp, bs: Bits) : (Val, Bits) = (r, bs) match {
case (ONE, bs) => (Empty, bs)
case (CHAR(f), C(c)::bs) => (Chr(c), bs)
case (ALTS(r::Nil), bs) => decode_aux(r, bs)//this case seems tailor made for those who want to simplify the regex before der or simp
case (ALTS(rs), bs) => bs match {
case Z::bs1 => {
val (v, bs2) = decode_aux(rs.head, bs1)
(Left(v), bs2)
}
case S::bs1 => {
val (v, bs2) = decode_aux(ALTS(rs.tail), bs1)
(Right(v), bs2)
}
}
case (SEQ(r1, r2), bs) => {
val (v1, bs1) = decode_aux(r1, bs)
val (v2, bs2) = decode_aux(r2, bs1)
(Sequ(v1, v2), bs2)
}
case (STAR(r1), S::bs) => {
val (v, bs1) = decode_aux(r1, bs)
//println(v)
val (Stars(vs), bs2) = decode_aux(STAR(r1), bs1)
(Stars(v::vs), bs2)
}
case (STAR(_), Z::bs) => (Stars(Nil), bs)
case (RECD(x, r1), bs) => {
val (v, bs1) = decode_aux(r1, bs)
(Rec(x, v), bs1)
}
}
def decode(r: Rexp, bs: Bits) = decode_aux(r, bs) match {
case (v, Nil) => v
case _ => throw new Exception("Not decodable")
}
//erase function: extracts the regx from Aregex
def erase(r:ARexp): Rexp = r match{
case AZERO => ZERO
case AONE(_) => ONE
case ACHAR(bs, f) => CHAR(f)
case AALTS(bs, rs) => ALTS(rs.map(erase(_)))
case ASEQ(bs, r1, r2) => SEQ (erase(r1), erase(r2))
case ASTAR(cs, r)=> STAR(erase(r))
}
//--------------------------------------------------------------------------------------------------------START OF NON-BITCODE PART
// nullable function: tests whether the regular
// expression can recognise the empty string
def nullable (r: Rexp) : Boolean = r match {
case ZERO => false
case ONE => true
case CHAR(_) => false
case ALTS(rs) => rs.exists(nullable)
case SEQ(r1, r2) => nullable(r1) && nullable(r2)
case STAR(_) => true
case RECD(_, r) => nullable(r)
//case PLUS(r) => nullable(r)
}
// derivative of a regular expression w.r.t. a character
def der (c: Char, r: Rexp) : Rexp = r match {
case ZERO => ZERO
case ONE => ZERO
case CHAR(f) => if (c == f) ONE else ZERO
case ALTS(List(r1, r2)) => ALTS(List(der(c, r1), der(c, r2)))
case SEQ(r1, r2) =>
if (nullable(r1)) ALTS(List(SEQ(der(c, r1), r2), der(c, r2)))
else SEQ(der(c, r1), r2)
case STAR(r) => SEQ(der(c, r), STAR(r))
case RECD(_, r1) => der(c, r1)
//case PLUS(r) => SEQ(der(c, r), STAR(r))
}
def flatten(v: Val) : String = v match {
case Empty => ""
case Chr(c) => c.toString
case Left(v) => flatten(v)
case Right(v) => flatten(v)
case Sequ(v1, v2) => flatten(v1) + flatten(v2)
case Stars(vs) => vs.map(flatten).mkString
case Rec(_, v) => flatten(v)
}
// extracts an environment from a value
def env(v: Val) : List[(String, String)] = v match {
case Empty => Nil
case Chr(c) => Nil
case Left(v) => env(v)
case Right(v) => env(v)
case Sequ(v1, v2) => env(v1) ::: env(v2)
case Stars(vs) => vs.flatMap(env)
case Rec(x, v) => (x, flatten(v))::env(v)
}
// injection part
def mkeps(r: Rexp) : Val = r match {
case ONE => Empty
case ALTS(List(r1, r2)) =>
if (nullable(r1)) Left(mkeps(r1)) else Right(mkeps(r2))
case SEQ(r1, r2) => Sequ(mkeps(r1), mkeps(r2))
case STAR(r) => Stars(Nil)
case RECD(x, r) => Rec(x, mkeps(r))
//case PLUS(r) => Stars(List(mkeps(r)))
}
def inj(r: Rexp, c: Char, v: Val) : Val = (r, v) match {
case (STAR(r), Sequ(v1, Stars(vs))) => Stars(inj(r, c, v1)::vs)
case (SEQ(r1, r2), Sequ(v1, v2)) => Sequ(inj(r1, c, v1), v2)
case (SEQ(r1, r2), Left(Sequ(v1, v2))) => Sequ(inj(r1, c, v1), v2)
case (SEQ(r1, r2), Right(v2)) => Sequ(mkeps(r1), inj(r2, c, v2))
case (ALTS(List(r1, r2)), Left(v1)) => Left(inj(r1, c, v1))
case (ALTS(List(r1, r2)), Right(v2)) => Right(inj(r2, c, v2))
case (CHAR(_), Empty) => Chr(c)
case (RECD(x, r1), _) => Rec(x, inj(r1, c, v))
//case (PLUS(r), Sequ(v1, Stars(vs))) => Stars(inj(r, c, v1)::vs)
}
def lex(r: Rexp, s: List[Char]) : Val = s match {
case Nil => if (nullable(r)) mkeps(r) else throw new Exception("Not matched")
case c::cs => inj(r, c, lex(der(c, r), cs))
}
def lexing(r: Rexp, s: String) : Val = lex(r, s.toList)
// some "rectification" functions for simplification
def F_ID(v: Val): Val = v
def F_RIGHT(f: Val => Val) = (v:Val) => Right(f(v))
def F_LEFT(f: Val => Val) = (v:Val) => Left(f(v))
def F_ALT(f1: Val => Val, f2: Val => Val) = (v:Val) => v match {
case Right(v) => Right(f2(v))
case Left(v) => Left(f1(v))
}
def F_SEQ(f1: Val => Val, f2: Val => Val) = (v:Val) => v match {
case Sequ(v1, v2) => Sequ(f1(v1), f2(v2))
}
def F_SEQ_Empty1(f1: Val => Val, f2: Val => Val) =
(v:Val) => Sequ(f1(Empty), f2(v))
def F_SEQ_Empty2(f1: Val => Val, f2: Val => Val) =
(v:Val) => Sequ(f1(v), f2(Empty))
def F_RECD(f: Val => Val) = (v:Val) => v match {
case Rec(x, v) => Rec(x, f(v))
}
def F_ERROR(v: Val): Val = throw new Exception("error")
// simplification of regular expressions returning also an
// rectification function; no simplification under STAR
def simp(r: Rexp): (Rexp, Val => Val) = r match {
case ALTS(List(r1, r2)) => {
val (r1s, f1s) = simp(r1)
val (r2s, f2s) = simp(r2)
(r1s, r2s) match {
case (ZERO, _) => (r2s, F_RIGHT(f2s))
case (_, ZERO) => (r1s, F_LEFT(f1s))
case _ => if (r1s == r2s) (r1s, F_LEFT(f1s))
else (ALTS(List(r1s, r2s)), F_ALT(f1s, f2s))
}
}
case SEQ(r1, r2) => {
val (r1s, f1s) = simp(r1)
val (r2s, f2s) = simp(r2)
(r1s, r2s) match {
case (ZERO, _) => (ZERO, F_ERROR)
case (_, ZERO) => (ZERO, F_ERROR)
case (ONE, _) => (r2s, F_SEQ_Empty1(f1s, f2s))
case (_, ONE) => (r1s, F_SEQ_Empty2(f1s, f2s))
case _ => (SEQ(r1s,r2s), F_SEQ(f1s, f2s))
}
}
case RECD(x, r1) => {
val (r1s, f1s) = simp(r1)
(RECD(x, r1s), F_RECD(f1s))
}
case r => (r, F_ID)
}
/*
val each_simp_time = scala.collection.mutable.ArrayBuffer.empty[Long]
val each_simp_timeb = scala.collection.mutable.ArrayBuffer.empty[Long]
*/
def lex_simp(r: Rexp, s: List[Char]) : Val = s match {
case Nil => {
if (nullable(r)) {
mkeps(r)
}
else throw new Exception("Not matched")
}
case c::cs => {
val (r_simp, f_simp) = simp(der(c, r))
inj(r, c, f_simp(lex_simp(r_simp, cs)))
}
}
def lexing_simp(r: Rexp, s: String) : Val = lex_simp(r, s.toList)
//println(lexing_simp(("a" | "ab") ~ ("b" | ""), "ab"))
// filters out all white spaces
def tokenise(r: Rexp, s: String) =
env(lexing_simp(r, s)).filterNot { _._1 == "w"}
//reads the string from a file
def fromFile(name: String) : String =
io.Source.fromFile(name).mkString
def tokenise_file(r: Rexp, name: String) =
tokenise(r, fromFile(name))
// Testing
//============
def time[T](code: => T) = {
val start = System.nanoTime()
val result = code
val end = System.nanoTime()
println((end - start)/1.0e9)
result
}
//--------------------------------------------------------------------------------------------------------END OF NON-BITCODE PART
// bnullable function: tests whether the aregular
// expression can recognise the empty string
def bnullable (r: ARexp) : Boolean = r match {
case AZERO => false
case AONE(_) => true
case ACHAR(_,_) => false
case AALTS(_, rs) => rs.exists(bnullable)
case ASEQ(_, r1, r2) => bnullable(r1) && bnullable(r2)
case ASTAR(_, _) => true
}
def mkepsBC(r: ARexp) : Bits = r match {
case AONE(bs) => bs
case AALTS(bs, rs) => {
val n = rs.indexWhere(bnullable)
bs ++ mkepsBC(rs(n))
}
case ASEQ(bs, r1, r2) => bs ++ mkepsBC(r1) ++ mkepsBC(r2)
case ASTAR(bs, r) => bs ++ List(Z)
}
// derivative of a regular expression w.r.t. a character
def bder(c: Char, r: ARexp) : ARexp = r match {
case AZERO => AZERO
case AONE(_) => AZERO
case ACHAR(bs, f) => if (c == f) AONE(bs:::List(C(c))) else AZERO
case AALTS(bs, rs) => AALTS(bs, rs.map(bder(c, _)))
case ASEQ(bs, r1, r2) =>
if (bnullable(r1)) AALT(bs, ASEQ(Nil, bder(c, r1), r2), fuse(mkepsBC(r1), bder(c, r2)))
else ASEQ(bs, bder(c, r1), r2)
case ASTAR(bs, r) => ASEQ(bs, fuse(List(S), bder(c, r)), ASTAR(Nil, r))
}
def ders (s: List[Char], r: Rexp) : Rexp = s match {
case Nil => r
case c::s => ders(s, der(c, r))
}
// derivative w.r.t. a string (iterates bder)
@tailrec
def bders (s: List[Char], r: ARexp) : ARexp = s match {
case Nil => r
case c::s => bders(s, bder(c, r))
}
def flats(rs: List[ARexp]): List[ARexp] = rs match {
case Nil => Nil
case AZERO :: rs1 => flats(rs1)
case AALTS(bs, rs1) :: rs2 => rs1.map(fuse(bs, _)) ::: flats(rs2)
case r1 :: rs2 => r1 :: flats(rs2)
}
def rflats(rs: List[Rexp]): List[Rexp] = rs match {
case Nil => Nil
case ZERO :: rs1 => rflats(rs1)
case ALTS(rs1) :: rs2 => rs1 ::: rflats(rs2)
case r1 :: rs2 => r1 :: rflats(rs2)
}
var flats_time = 0L
var dist_time = 0L
def bsimp(r: ARexp): ARexp = r match {
case ASEQ(bs1, r1, r2) => (bsimp(r1), bsimp(r2)) match {
case (AZERO, _) => AZERO
case (_, AZERO) => AZERO
case (AONE(bs2), r2s) => fuse(bs1 ++ bs2, r2s)
case (r1s, r2s) => ASEQ(bs1, r1s, r2s)
}
case AALTS(bs1, rs) => {
val rs_simp = rs.map(bsimp)
val flat_res = flats(rs_simp)
val dist_res = distinctBy(flat_res, erase)
dist_res match {
case Nil => AZERO
case s :: Nil => fuse(bs1, s)
case rs => AALTS(bs1, rs)
}
}
//case ASTAR(bs, r) => ASTAR(bs, bsimp(r))
case r => r
}
def super_bsimp(r: ARexp): ARexp = r match {
case ASEQ(bs1, r1, r2) => (super_bsimp(r1), super_bsimp(r2)) match {
case (AZERO, _) => AZERO
case (_, AZERO) => AZERO
case (AONE(bs2), r2s) => fuse(bs1 ++ bs2, r2s)
case (AALTS(bs2, rs), r2) => AALTS(bs1 ++ bs2, rs.map(r => r match {case AONE(bs3) => fuse(bs3, r2) case r => ASEQ(Nil, r, r2)}) )
case (r1s, r2s) => ASEQ(bs1, r1s, r2s)
}
case AALTS(bs1, rs) => {
val rs_simp = rs.map(super_bsimp)
val flat_res = flats(rs_simp)
val dist_res = distinctBy(flat_res, erase)
dist_res match {
case Nil => AZERO
case s :: Nil => fuse(bs1, s)
case rs => AALTS(bs1, rs)
}
}
//case ASTAR(bs, r) => ASTAR(bs, bsimp(r))
case r => r
}
def simp_weakened(r: Rexp): Rexp = r match {
case SEQ(r1, r2) => (simp_weakened(r1), r2) match {
case (ZERO, _) => ZERO
case (_, ZERO) => ZERO
case (ONE, r2s) => r2s
case (r1s, r2s) => SEQ(r1s, r2s)
}
case ALTS(rs) => {
val rs_simp = rs.map(simp_weakened)
val flat_res = rflats(rs_simp)
val dist_res = rs_simp.distinct
dist_res match {
case Nil => ZERO
case s :: Nil => s
case rs => ALTS(rs)
}
}
case STAR(r) => STAR(simp_weakened(r))
case r => r
}
//----------------------------------------------------------------------------experiment bsimp
/*
def bders_simp (s: List[Char], r: ARexp) : ARexp = s match {
case Nil => r
case c::s => bders_simp(s, bsimp(bder(c, r)))
}
*/
/*
def time[T](code: => T) = {
val start = System.nanoTime()
val result = code
val end = System.nanoTime()
println((end - start)/1.0e9)
result
}
*/
// main unsimplified lexing function (produces a value)
def blex(r: ARexp, s: List[Char]) : Bits = s match {
case Nil => if (bnullable(r)) mkepsBC(r) else throw new Exception("Not matched")
case c::cs => {
val der_res = bder(c,r)
blex(der_res, cs)
}
}
def bpre_lexing(r: Rexp, s: String) = blex(internalise(r), s.toList)
//def blexing(r: Rexp, s: String) : Val = decode(r, blex(internalise(r), s.toList))
var bder_time = 0L
var bsimp_time = 0L
var mkepsBC_time = 0L
var small_de = 2
var big_de = 5
var usual_de = 3
def blex_simp(r: ARexp, s: List[Char]) : Bits = s match {
case Nil => {
if (bnullable(r)) {
//println(asize(r))
mkepsBC(r)
}
else throw new Exception("Not matched")
}
case c::cs => {
val der_res = bder(c,r)
val simp_res = bsimp(der_res)
blex_simp(simp_res, cs)
}
}
def super_blex_simp(r: ARexp, s: List[Char]): Bits = s match {
case Nil => {
if (bnullable(r)) {
mkepsBC(r)
}
else throw new Exception("Not matched")
}
case c::cs => {
super_blex_simp(super_bsimp(bder(c,r)), cs)
}
}
def blex_real_simp(r: ARexp, s: List[Char]): ARexp = s match{
case Nil => r
case c::cs => blex_real_simp(bsimp(bder(c, r)), cs)
}
//size: of a Aregx for testing purposes
def size(r: Rexp) : Int = r match {
case ZERO => 1
case ONE => 1
case CHAR(_) => 1
case SEQ(r1, r2) => 1 + size(r1) + size(r2)
case ALTS(rs) => 1 + rs.map(size).sum
case STAR(r) => 1 + size(r)
}
def asize(a: ARexp) = size(erase(a))
// decoding does not work yet
def blexing_simp(r: Rexp, s: String) = {
val bit_code = blex_simp(internalise(r), s.toList)
decode(r, bit_code)
}
def super_blexing_simp(r: Rexp, s: String) = {
decode(r, super_blex_simp(internalise(r), s.toList))
}
// Lexing Rules for a Small While Language
//symbols
/*
val SYM = PRED("abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ".contains(_))
//digits
val DIGIT = PRED("0123456789".contains(_))
//identifiers
val ID = SYM ~ (SYM | DIGIT).%
//numbers
val NUM = STAR(DIGIT)
//keywords
val KEYWORD : Rexp = "skip" | "while" | "do" | "if" | "then" | "else" | "read" | "write" | "true" | "false"
val AKEYWORD: Rexp = ALTS(List("skip" , "while" , "do" , "if" , "then" , "else" , "read" , "write" , "true" , "false"))
//semicolons
val SEMI: Rexp = ";"
//operators
val OP: Rexp = ":=" | "==" | "-" | "+" | "*" | "!=" | "<" | ">" | "<=" | ">=" | "%" | "/"
val AOP: Rexp = ALTS(List(":=" , "==" , "-" , "+" , "*" , "!=" , "<" , ">" , "<=" , ">=" , "%" , "/"))
//whitespaces
val WHITESPACE = PLUS(" " | "\n" | "\t")
//parentheses
val RPAREN: Rexp = ")"
val LPAREN: Rexp = "("
val BEGIN: Rexp = "{"
val END: Rexp = "}"
//strings...but probably needs not
val STRING: Rexp = "\"" ~ SYM.% ~ "\""
val WHILE_REGS = (("k" $ KEYWORD) |
("i" $ ID) |
("o" $ OP) |
("n" $ NUM) |
("s" $ SEMI) |
("str" $ STRING) |
("p" $ (LPAREN | RPAREN)) |
("b" $ (BEGIN | END)) |
("w" $ WHITESPACE)).%
val AWHILE_REGS = (
ALTS(
List(
("k" $ AKEYWORD),
("i" $ ID),
("o" $ AOP) ,
("n" $ NUM) ,
("s" $ SEMI) ,
("str" $ STRING),
("p" $ (LPAREN | RPAREN)),
("b" $ (BEGIN | END)),
("w" $ WHITESPACE)
)
)
).%
*/
//--------------------------------------------------------------------------------------------------------START OF NON-BITCODE PART (TESTING)
/*
// Two Simple While programs
//========================
println("prog0 test")
val prog0 = """read n"""
println(env(lexing_simp(WHILE_REGS, prog0)))
println(tokenise(WHILE_REGS, prog0))
println("prog1 test")
val prog1 = """read n; write (n)"""
println(tokenise(WHILE_REGS, prog1))
*/
// Bigger Tests
//==============
def escape(raw: String): String = {
import scala.reflect.runtime.universe._
Literal(Constant(raw)).toString
}
val prog2 = """
write "Fib";
read n;
minus1 := 0;
minus2 := 1;
while n > 0 do {
temp := minus2;
minus2 := minus1 + minus2;
minus1 := temp;
n := n - 1
};
write "Result";
write minus2
"""
val prog3 = """
start := 1000;
x := start;
y := start;
z := start;
while 0 < x do {
while 0 < y do {
while 0 < z do {
z := z - 1
};
z := start;
y := y - 1
};
y := start;
x := x - 1
}
"""
/*
for(i <- 400 to 400 by 1){
println(i+":")
blexing_simp(WHILE_REGS, prog2 * i)
} */
/*
for (i <- 2 to 5){
for(j <- 1 to 3){
println(i,j)
small_de = i
usual_de = i + j
big_de = i + 2*j
blexing_simp(AWHILE_REGS, prog2 * 100)
}
}*/
/*
println("Tokens of prog2")
println(tokenise(WHILE_REGS, prog2).mkString("\n"))
val fib_tokens = tokenise(WHILE_REGS, prog2)
fib_tokens.map{case (s1, s2) => (escape(s1), escape(s2))}.mkString(",\n")
val test_tokens = tokenise(WHILE_REGS, prog3)
test_tokens.map{case (s1, s2) => (escape(s1), escape(s2))}.mkString(",\n")
*/
/*
println("time test for blexing_simp")
for (i <- 1 to 1 by 1) {
lexing_simp(WHILE_REGS, prog2 * i)
blexing_simp(WHILE_REGS, prog2 * i)
for( j <- 0 to each_simp_timeb.length - 1){
if( each_simp_timeb(j)/each_simp_time(j) >= 10.0 )
println(j, each_simp_timeb(j), each_simp_time(j))
}
}
*/
//--------------------------------------------------------------------------------------------------------END OF NON-BITCODE PART (TESTING)
def clear() = {
print("")
//print("\33[H\33[2J")
}
//testing the two lexings produce the same value
//enumerates strings of length n over alphabet cs
def strs(n: Int, cs: String) : Set[String] = {
if (n == 0) Set("")
else {
val ss = strs(n - 1, cs)
ss ++
(for (s <- ss; c <- cs.toList) yield c + s)
}
}
def enum(n: Int, s: String) : Stream[Rexp] = n match {
case 0 => ZERO #:: ONE #:: s.toStream.map(CHAR)
case n => {
val rs = enum(n - 1, s)
rs #:::
(for (r1 <- rs; r2 <- rs) yield ALT(r1, r2)) #:::
(for (r1 <- rs; r2 <- rs) yield SEQ(r1, r2)) #:::
(for (r1 <- rs) yield STAR(r1))
}
}
//tests blexing and lexing
def tests_blexer_simp(ss: Set[String])(r: Rexp) = {
clear()
//println(s"Testing ${r}")
for (s <- ss.par) yield {
val res1 = Try(Some(lexing_simp(r, s))).getOrElse(None)
val res2 = Try(Some(super_blexing_simp(r, s))).getOrElse(None)
if (res1 != res2) println(s"Disagree on ${r} and ${s}")
if (res1 != res2) println(s" ${res1} != ${res2}")
if (res1 != res2) Some((r, s)) else None
}
}
/*
def single_expression_explorer(ar: ARexp, ss: Set[String]): Unit = {
for (s <- ss){
val der_res = bder(c, ar)
val simp_res = bsimp(der_res)
println(asize(der_res))
println(asize(simp_res))
single_expression_explorer(simp_res, (sc - c))
}
}*/
//single_expression_explorer(internalise(("c"~("a"+"b"))%) , Set('a','b','c'))
}
import Rexp.Bits
abstract class ARexp
case object AZERO extends ARexp
case class AONE(bs: Bits) extends ARexp
case class ACHAR(bs: Bits, f: Char) extends ARexp
case class AALTS(bs: Bits, rs: List[ARexp]) extends ARexp
case class ASEQ(bs: Bits, r1: ARexp, r2: ARexp) extends ARexp
case class ASTAR(bs: Bits, r: ARexp) extends ARexp
abstract class Val
case object Empty extends Val
case class Chr(c: Char) extends Val
case class Sequ(v1: Val, v2: Val) extends Val
case class Left(v: Val) extends Val
case class Right(v: Val) extends Val
case class Stars(vs: List[Val]) extends Val
case class Rec(x: String, v: Val) extends Val
//case class Pos(i: Int, v: Val) extends Val
case object Prd extends Val