lex_blex_Frankensteined.scala
author Chengsong
Sat, 16 Mar 2019 20:05:13 +0000
changeset 7 1572760ff866
parent 5 622ddbb1223a
child 11 9c1ca6d6e190
permissions -rw-r--r--
found the difference: caused by flats in ders_simp, the alts is at top most level , so no fuse and bits stay at the alts level whereas in ders + singele simp, the alts that should be the final top-level alts is not at the topmost level initially before simplification so it is opened up and bits fused. later it finds out itself the top level only aalts remaining, but the fuse is not reversible we do not know what happened either.

package RexpRelated
import scala.language.implicitConversions    
import scala.language.reflectiveCalls
import scala.annotation.tailrec   
import scala.util.Try

abstract class Bit
case object Z extends Bit
case object S extends Bit
case class C(c: Char) extends Bit


abstract class Rexp 
case object ZERO extends Rexp
case object ONE extends Rexp
case class CHAR(c: Char) extends Rexp
case class ALTS(rs: List[Rexp]) extends Rexp 
case class SEQ(r1: Rexp, r2: Rexp) extends Rexp 
case class STAR(r: Rexp) extends Rexp 
case class RECD(x: String, r: Rexp) extends Rexp



object Rexp{
  type Bits = List[Bit]
  // abbreviations
  type Mon = (Char, Rexp)
  type Lin = Set[Mon]
  def ALT(r1: Rexp, r2: Rexp) = ALTS(List(r1, r2))
  def PLUS(r: Rexp) = SEQ(r, STAR(r))
  def AALT(bs: Bits, r1: ARexp, r2: ARexp) = AALTS(bs, List(r1, r2))


  def distinctBy[B, C](xs: List[B], f: B => C, acc: List[C] = Nil): List[B] = xs match {
    case Nil => Nil
    case (x::xs) => {
      val res = f(x)
      if (acc.contains(res)) distinctBy(xs, f, acc)  
      else x::distinctBy(xs, f, res::acc)
    }
  } 
  // some convenience for typing in regular expressions
  def charlist2rexp(s : List[Char]): Rexp = s match {
    case Nil => ONE
    case c::Nil => CHAR(c)
    case c::s => SEQ(CHAR(c), charlist2rexp(s))
  }
  implicit def string2rexp(s : String) : Rexp = charlist2rexp(s.toList)

  implicit def RexpOps(r: Rexp) = new {
    def | (s: Rexp) = ALT(r, s)
    def % = STAR(r)
    def ~ (s: Rexp) = SEQ(r, s)
  }

  implicit def stringOps(s: String) = new {
    def | (r: Rexp) = ALT(s, r)
    def | (r: String) = ALT(s, r)
    def % = STAR(s)
    def ~ (r: Rexp) = SEQ(s, r)
    def ~ (r: String) = SEQ(s, r)
    def $ (r: Rexp) = RECD(s, r)
  }

  // translation into ARexps
  def fuse(bs: Bits, r: ARexp) : ARexp = r match {
    case AZERO => AZERO
    case AONE(cs) => AONE(bs ++ cs)
    case ACHAR(cs, f) => ACHAR(bs ++ cs, f)
    case AALTS(cs, rs) => AALTS(bs ++ cs, rs)
    case ASEQ(cs, r1, r2) => ASEQ(bs ++ cs, r1, r2)
    case ASTAR(cs, r) => ASTAR(bs ++ cs, r)
  }

  def internalise(r: Rexp) : ARexp = r match {
    case ZERO => AZERO
    case ONE => AONE(Nil)
    case CHAR(c) => ACHAR(Nil, c)
    case ALTS(List(r1, r2)) => 
      AALTS(Nil, List(fuse(List(Z), internalise(r1)), fuse(List(S), internalise(r2))))
    case ALTS(r1::rs) => {
      val AALTS(Nil, rs2) = internalise(ALTS(rs))
      AALTS(Nil, fuse(List(Z), internalise(r1)) :: rs2.map(fuse(List(S), _)))
    }
    case SEQ(r1, r2) => ASEQ(Nil, internalise(r1), internalise(r2))
    case STAR(r) => ASTAR(Nil, internalise(r))
    case RECD(x, r) => internalise(r)
  }

  internalise(("a" | "ab") ~ ("b" | ""))

  def decode_aux(r: Rexp, bs: Bits) : (Val, Bits) = (r, bs) match {
    case (ONE, bs) => (Empty, bs)
    case (CHAR(f), C(c)::bs) => (Chr(c), bs)
    case (ALTS(r::Nil), bs) => decode_aux(r, bs)//this case seems tailor made for those who want to simplify the regex before der or simp
    case (ALTS(rs), bs) => bs match {
      case Z::bs1 => {
        val (v, bs2) = decode_aux(rs.head, bs1)
        (Left(v), bs2)
      }
      case S::bs1 => {
        val (v, bs2) = decode_aux(ALTS(rs.tail), bs1)
        (Right(v), bs2)			
      }
    }
    case (SEQ(r1, r2), bs) => {
      val (v1, bs1) = decode_aux(r1, bs)
      val (v2, bs2) = decode_aux(r2, bs1)
      (Sequ(v1, v2), bs2)
    }
    case (STAR(r1), S::bs) => {
      val (v, bs1) = decode_aux(r1, bs)
      //println(v)
      val (Stars(vs), bs2) = decode_aux(STAR(r1), bs1)
      (Stars(v::vs), bs2)
    }
    case (STAR(_), Z::bs) => (Stars(Nil), bs)
    case (RECD(x, r1), bs) => {
      val (v, bs1) = decode_aux(r1, bs)
      (Rec(x, v), bs1)
    }
  }

  def decode(r: Rexp, bs: Bits) = decode_aux(r, bs) match {
    case (v, Nil) => v
    case _ => throw new Exception("Not decodable")
  }


  //erase function: extracts the regx from Aregex
  def erase(r:ARexp): Rexp = r match{
    case AZERO => ZERO
    case AONE(_) => ONE
    case ACHAR(bs, f) => CHAR(f)
    case AALTS(bs, rs) => ALTS(rs.map(erase(_)))
    case ASEQ(bs, r1, r2) => SEQ (erase(r1), erase(r2))
    case ASTAR(cs, r)=> STAR(erase(r))
  }

  //--------------------------------------------------------------------------------------------------------START OF NON-BITCODE PART
  // nullable function: tests whether the regular 
  // expression can recognise the empty string
  def nullable (r: Rexp) : Boolean = r match {
    case ZERO => false
    case ONE => true
    case CHAR(_) => false
    case ALTS(rs) => rs.exists(nullable)
    case SEQ(r1, r2) => nullable(r1) && nullable(r2)
    case STAR(_) => true
    case RECD(_, r) => nullable(r)
    //case PLUS(r) => nullable(r)
  }

  // derivative of a regular expression w.r.t. a character
  def der (c: Char, r: Rexp) : Rexp = r match {
    case ZERO => ZERO
    case ONE => ZERO
    case CHAR(f) => if (c == f) ONE else ZERO
    case ALTS(List(r1, r2)) => ALTS(List(der(c, r1), der(c, r2)))
    case SEQ(r1, r2) => 
      if (nullable(r1)) ALTS(List(SEQ(der(c, r1), r2), der(c, r2)))
      else SEQ(der(c, r1), r2)
    case STAR(r) => SEQ(der(c, r), STAR(r))
    case RECD(_, r1) => der(c, r1)
    //case PLUS(r) => SEQ(der(c, r), STAR(r))
  }

  def flatten(v: Val) : String = v match {
    case Empty => ""
    case Chr(c) => c.toString
    case Left(v) => flatten(v)
    case Right(v) => flatten(v)
    case Sequ(v1, v2) => flatten(v1) + flatten(v2)
    case Stars(vs) => vs.map(flatten).mkString
    case Rec(_, v) => flatten(v)
  }

  // extracts an environment from a value
  def env(v: Val) : List[(String, String)] = v match {
    case Empty => Nil
    case Chr(c) => Nil
    case Left(v) => env(v)
    case Right(v) => env(v)
    case Sequ(v1, v2) => env(v1) ::: env(v2)
    case Stars(vs) => vs.flatMap(env)
    case Rec(x, v) => (x, flatten(v))::env(v)
  }


  // injection part
  def mkeps(r: Rexp) : Val = r match {
    case ONE => Empty
    case ALTS(List(r1, r2)) => 
      if (nullable(r1)) Left(mkeps(r1)) else Right(mkeps(r2))
    case SEQ(r1, r2) => Sequ(mkeps(r1), mkeps(r2))
    case STAR(r) => Stars(Nil)
    case RECD(x, r) => Rec(x, mkeps(r))
    //case PLUS(r) => Stars(List(mkeps(r)))
  }

  def inj(r: Rexp, c: Char, v: Val) : Val = (r, v) match {
    case (STAR(r), Sequ(v1, Stars(vs))) => Stars(inj(r, c, v1)::vs)
    case (SEQ(r1, r2), Sequ(v1, v2)) => Sequ(inj(r1, c, v1), v2)
    case (SEQ(r1, r2), Left(Sequ(v1, v2))) => Sequ(inj(r1, c, v1), v2)
    case (SEQ(r1, r2), Right(v2)) => Sequ(mkeps(r1), inj(r2, c, v2))
    case (ALTS(List(r1, r2)), Left(v1)) => Left(inj(r1, c, v1))
    case (ALTS(List(r1, r2)), Right(v2)) => Right(inj(r2, c, v2))
    case (CHAR(_), Empty) => Chr(c) 
    case (RECD(x, r1), _) => Rec(x, inj(r1, c, v))
    //case (PLUS(r), Sequ(v1, Stars(vs))) => Stars(inj(r, c, v1)::vs)
  }
  def lex(r: Rexp, s: List[Char]) : Val = s match {
    case Nil => if (nullable(r)) mkeps(r) else throw new Exception("Not matched")
    case c::cs => inj(r, c, lex(der(c, r), cs))
  }

  def lexing(r: Rexp, s: String) : Val = lex(r, s.toList)

  // some "rectification" functions for simplification
  def F_ID(v: Val): Val = v
  def F_RIGHT(f: Val => Val) = (v:Val) => Right(f(v))
  def F_LEFT(f: Val => Val) = (v:Val) => Left(f(v))
  def F_ALT(f1: Val => Val, f2: Val => Val) = (v:Val) => v match {
    case Right(v) => Right(f2(v))
    case Left(v) => Left(f1(v))
  }
  def F_SEQ(f1: Val => Val, f2: Val => Val) = (v:Val) => v match {
    case Sequ(v1, v2) => Sequ(f1(v1), f2(v2))
  }
  def F_SEQ_Empty1(f1: Val => Val, f2: Val => Val) = 
    (v:Val) => Sequ(f1(Empty), f2(v))
  def F_SEQ_Empty2(f1: Val => Val, f2: Val => Val) = 
    (v:Val) => Sequ(f1(v), f2(Empty))
  def F_RECD(f: Val => Val) = (v:Val) => v match {
    case Rec(x, v) => Rec(x, f(v))
  }
  def F_ERROR(v: Val): Val = throw new Exception("error")

  // simplification of regular expressions returning also an
  // rectification function; no simplification under STAR 
  def simp(r: Rexp): (Rexp, Val => Val) = r match {
    case ALTS(List(r1, r2)) => {
      val (r1s, f1s) = simp(r1)
      val (r2s, f2s) = simp(r2)
      (r1s, r2s) match {
        case (ZERO, _) => (r2s, F_RIGHT(f2s))
        case (_, ZERO) => (r1s, F_LEFT(f1s))
        case _ => if (r1s == r2s) (r1s, F_LEFT(f1s))
                  else (ALTS(List(r1s, r2s)), F_ALT(f1s, f2s)) 
      }
    }
    case SEQ(r1, r2) => {
      val (r1s, f1s) = simp(r1)
      val (r2s, f2s) = simp(r2)
      (r1s, r2s) match {
        case (ZERO, _) => (ZERO, F_ERROR)
        case (_, ZERO) => (ZERO, F_ERROR)
        case (ONE, _) => (r2s, F_SEQ_Empty1(f1s, f2s))
        case (_, ONE) => (r1s, F_SEQ_Empty2(f1s, f2s))
        case _ => (SEQ(r1s,r2s), F_SEQ(f1s, f2s))
      }
    }
    case RECD(x, r1) => {
      val (r1s, f1s) = simp(r1)
      (RECD(x, r1s), F_RECD(f1s))
    }
    case r => (r, F_ID)
  }
  /*
  val each_simp_time = scala.collection.mutable.ArrayBuffer.empty[Long]
  val each_simp_timeb = scala.collection.mutable.ArrayBuffer.empty[Long]
  */
  def lex_simp(r: Rexp, s: List[Char]) : Val = s match {
    case Nil => {
      if (nullable(r)) {
        mkeps(r) 
      }
      else throw new Exception("Not matched")
    }
    case c::cs => {
      val (r_simp, f_simp) = simp(der(c, r))
      inj(r, c, f_simp(lex_simp(r_simp, cs)))
    }
  }

  def lexing_simp(r: Rexp, s: String) : Val = lex_simp(r, s.toList)

  //println(lexing_simp(("a" | "ab") ~ ("b" | ""), "ab"))

  // filters out all white spaces
  def tokenise(r: Rexp, s: String) = 
    env(lexing_simp(r, s)).filterNot { _._1 == "w"}


  //reads the string from a file 
  def fromFile(name: String) : String = 
    io.Source.fromFile(name).mkString

  def tokenise_file(r: Rexp, name: String) = 
    tokenise(r, fromFile(name))
  
  //   Testing
  //============

  def time[T](code: => T) = {
    val start = System.nanoTime()
    val result = code
    val end = System.nanoTime()
    println((end - start)/1.0e9)
    result
  }

  //--------------------------------------------------------------------------------------------------------END OF NON-BITCODE PART

  // bnullable function: tests whether the aregular 
  // expression can recognise the empty string
  def bnullable (r: ARexp) : Boolean = r match {
    case AZERO => false
    case AONE(_) => true
    case ACHAR(_,_) => false
    case AALTS(_, rs) => rs.exists(bnullable)
    case ASEQ(_, r1, r2) => bnullable(r1) && bnullable(r2)
    case ASTAR(_, _) => true
  }

  def mkepsBC(r: ARexp) : Bits = r match {
    case AONE(bs) => bs
    case AALTS(bs, rs) => {
      val n = rs.indexWhere(bnullable)
      bs ++ mkepsBC(rs(n))
    }
    case ASEQ(bs, r1, r2) => bs ++ mkepsBC(r1) ++ mkepsBC(r2)
    case ASTAR(bs, r) => bs ++ List(Z)
  }

  // derivative of a regular expression w.r.t. a character
  def bder(c: Char, r: ARexp) : ARexp = r match {
    case AZERO => AZERO
    case AONE(_) => AZERO
    case ACHAR(bs, f) => if (c == f) AONE(bs:::List(C(c))) else AZERO
    case AALTS(bs, rs) => AALTS(bs, rs.map(bder(c, _)))
    case ASEQ(bs, r1, r2) => 
      if (bnullable(r1)) AALT(bs, ASEQ(Nil, bder(c, r1), r2), fuse(mkepsBC(r1), bder(c, r2)))
      else ASEQ(bs, bder(c, r1), r2)
    case ASTAR(bs, r) => ASEQ(bs, fuse(List(S), bder(c, r)), ASTAR(Nil, r))
  }


  def ders (s: List[Char], r: Rexp) : Rexp = s match {
    case Nil => r
    case c::s => ders(s, der(c, r))
  }

  // derivative w.r.t. a string (iterates bder)
  @tailrec
  def bders (s: List[Char], r: ARexp) : ARexp = s match {
    case Nil => r
    case c::s => bders(s, bder(c, r))
  }

  def flats(rs: List[ARexp]): List[ARexp] = rs match {
      case Nil => Nil
      case AZERO :: rs1 => flats(rs1)
      case AALTS(bs, rs1) :: rs2 => rs1.map(fuse(bs, _)) ::: flats(rs2)
      case r1 :: rs2 => r1 :: flats(rs2)
    }
  def rflats(rs: List[Rexp]): List[Rexp] = rs match {
    case Nil => Nil
    case ZERO :: rs1 => rflats(rs1)
    case ALTS(rs1) :: rs2 => rs1 ::: rflats(rs2)
    case r1 :: rs2 => r1 :: rflats(rs2)
  }
  var flats_time = 0L
  var dist_time = 0L
  
  def bsimp(r: ARexp): ARexp = r match {
    case ASEQ(bs1, r1, r2) => (bsimp(r1), bsimp(r2)) match {
        case (AZERO, _) => AZERO
        case (_, AZERO) => AZERO
        case (AONE(bs2), r2s) => fuse(bs1 ++ bs2, r2s)
        case (r1s, r2s) => ASEQ(bs1, r1s, r2s)
    }
    case AALTS(bs1, rs) => {
      val rs_simp = rs.map(bsimp)
      val flat_res = flats(rs_simp)
      val dist_res = distinctBy(flat_res, erase)
      dist_res match {
        case Nil => AZERO
        case s :: Nil => fuse(bs1, s)
        case rs => AALTS(bs1, rs)  
      }
    }
    //case ASTAR(bs, r) => ASTAR(bs, bsimp(r))
    case r => r
  }
  def super_bsimp(r: ARexp): ARexp = r match {
    case ASEQ(bs1, r1, r2) => (super_bsimp(r1), super_bsimp(r2)) match {
        case (AZERO, _) => AZERO
        case (_, AZERO) => AZERO
        case (AONE(bs2), r2s) => fuse(bs1 ++ bs2, r2s)
        case (AALTS(bs2, rs), r2) => AALTS(bs1 ++ bs2, rs.map(r => r match {case AONE(bs3) => fuse(bs3, r2) case r => ASEQ(Nil, r, r2)}) ) 
        case (r1s, r2s) => ASEQ(bs1, r1s, r2s)
    }
    case AALTS(bs1, rs) => {
      val rs_simp = rs.map(super_bsimp)
      val flat_res = flats(rs_simp)
      val dist_res = distinctBy(flat_res, erase)
      dist_res match {
        case Nil => AZERO
        case s :: Nil => fuse(bs1, s)
        case rs => AALTS(bs1, rs)  
      }
    }
    //case ASTAR(bs, r) => ASTAR(bs, bsimp(r))
    case r => r
  }


  def simp_weakened(r: Rexp): Rexp = r match {
    case SEQ(r1, r2) => (simp_weakened(r1), r2) match {
        case (ZERO, _) => ZERO
        case (_, ZERO) => ZERO
        case (ONE, r2s) => r2s
        case (r1s, r2s) => SEQ(r1s, r2s)
    }
    case ALTS(rs) => {
      val rs_simp = rs.map(simp_weakened)
      val flat_res = rflats(rs_simp)
      val dist_res = rs_simp.distinct
      dist_res match {
        case Nil => ZERO
        case s :: Nil => s
        case rs => ALTS(rs)  
      }
    }
    case STAR(r) => STAR(simp_weakened(r))
    case r => r
  }
    
  
  //----------------------------------------------------------------------------experiment bsimp
  /*
  def bders_simp (s: List[Char], r: ARexp) : ARexp = s match {
    case Nil => r
    case c::s => bders_simp(s, bsimp(bder(c, r)))
  }
  */
  /*
  def time[T](code: => T) = {
    val start = System.nanoTime()
    val result = code
    val end = System.nanoTime()
    println((end - start)/1.0e9)
    result
  }
  */
  // main unsimplified lexing function (produces a value)
  def blex(r: ARexp, s: List[Char]) : Bits = s match {
    case Nil => if (bnullable(r)) mkepsBC(r) else throw new Exception("Not matched")
    case c::cs => {
      val der_res = bder(c,r)
      blex(der_res, cs)
    }
  }

  def bpre_lexing(r: Rexp, s: String) = blex(internalise(r), s.toList)
  //def blexing(r: Rexp, s: String) : Val = decode(r, blex(internalise(r), s.toList))

  var bder_time = 0L
  var bsimp_time = 0L
  var mkepsBC_time = 0L
  var small_de = 2
  var big_de = 5
  var usual_de = 3
  
  def blex_simp(r: ARexp, s: List[Char]) : Bits = s match {
    case Nil => {
      if (bnullable(r)) {
        //println(asize(r))
        mkepsBC(r)
      }
    else throw new Exception("Not matched")
    }
    case c::cs => {
      val der_res = bder(c,r)
      val simp_res = bsimp(der_res)
      blex_simp(simp_res, cs)      
    }
  }
  def super_blex_simp(r: ARexp, s: List[Char]): Bits = s match {
    case Nil => {
      if (bnullable(r)) {
        mkepsBC(r)
      }
      else throw new Exception("Not matched")
    }
    case c::cs => {
      super_blex_simp(super_bsimp(bder(c,r)), cs)
    }
  }
  def blex_real_simp(r: ARexp, s: List[Char]): ARexp = s match{
    case Nil => r
    case c::cs => blex_real_simp(bsimp(bder(c, r)), cs)
  }


  //size: of a Aregx for testing purposes 
  def size(r: Rexp) : Int = r match {
    case ZERO => 1
    case ONE => 1
    case CHAR(_) => 1
    case SEQ(r1, r2) => 1 + size(r1) + size(r2)
    case ALTS(rs) => 1 + rs.map(size).sum
    case STAR(r) => 1 + size(r)
  }

  def asize(a: ARexp) = size(erase(a))


  // decoding does not work yet
  def blexing_simp(r: Rexp, s: String) = {
    val bit_code = blex_simp(internalise(r), s.toList)
    decode(r, bit_code) 
  }
  def super_blexing_simp(r: Rexp, s: String) = {
    decode(r, super_blex_simp(internalise(r), s.toList))
  }





  // Lexing Rules for a Small While Language

  //symbols
  /*
  val SYM = PRED("abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ".contains(_))
  
  //digits
  val DIGIT = PRED("0123456789".contains(_))
  //identifiers
  val ID = SYM ~ (SYM | DIGIT).% 
  //numbers
  val NUM = STAR(DIGIT)
  //keywords
  val KEYWORD : Rexp = "skip" | "while" | "do" | "if" | "then" | "else" | "read" | "write" | "true" | "false"
  val AKEYWORD: Rexp = ALTS(List("skip" , "while" , "do" , "if" , "then" , "else" , "read" , "write" , "true" , "false"))
  //semicolons
  val SEMI: Rexp = ";"
  //operators
  val OP: Rexp = ":=" | "==" | "-" | "+" | "*" | "!=" | "<" | ">" | "<=" | ">=" | "%" | "/"
  val AOP: Rexp = ALTS(List(":=" , "==" , "-" , "+" , "*" , "!=" , "<" , ">" , "<=" , ">=" , "%" , "/"))
  //whitespaces
  val WHITESPACE = PLUS(" " | "\n" | "\t")
  //parentheses
  val RPAREN: Rexp = ")"
  val LPAREN: Rexp = "("
  val BEGIN: Rexp = "{"
  val END: Rexp = "}"
  //strings...but probably needs not
  val STRING: Rexp = "\"" ~ SYM.% ~ "\""



  val WHILE_REGS = (("k" $ KEYWORD) | 
                    ("i" $ ID) | 
                    ("o" $ OP) | 
                    ("n" $ NUM) | 
                    ("s" $ SEMI) | 
                    ("str" $ STRING) |
                    ("p" $ (LPAREN | RPAREN)) | 
                    ("b" $ (BEGIN | END)) | 
                    ("w" $ WHITESPACE)).%

  val AWHILE_REGS = (
    ALTS(
      List(
        ("k" $ AKEYWORD), 
                    ("i" $ ID),
                    ("o" $ AOP) , 
                    ("n" $ NUM) ,
                    ("s" $ SEMI) ,
                    ("str" $ STRING), 
                    ("p" $ (LPAREN | RPAREN)), 
                    ("b" $ (BEGIN | END)), 
                    ("w" $ WHITESPACE)
      )
    )
  ).%

*/


  //--------------------------------------------------------------------------------------------------------START OF NON-BITCODE PART (TESTING)
  /*
  // Two Simple While programs
  //========================
  println("prog0 test")

  val prog0 = """read n"""
  println(env(lexing_simp(WHILE_REGS, prog0)))
  println(tokenise(WHILE_REGS, prog0))

  println("prog1 test")

  val prog1 = """read  n; write (n)"""
  println(tokenise(WHILE_REGS, prog1))

  */
  // Bigger Tests
  //==============

  def escape(raw: String): String = {
    import scala.reflect.runtime.universe._
    Literal(Constant(raw)).toString
  }

  val prog2 = """
  write "Fib";
  read n;
  minus1 := 0;
  minus2 := 1;
  while n > 0 do {
    temp := minus2;
    minus2 := minus1 + minus2;
    minus1 := temp;
    n := n - 1
  };
  write "Result";
  write minus2
  """

  val prog3 = """
  start := 1000;
  x := start;
  y := start;
  z := start;
  while 0 < x do {
  while 0 < y do {
    while 0 < z do {
      z := z - 1
    };
    z := start;
    y := y - 1
  };     
  y := start;
  x := x - 1
  }
  """
  /*
  for(i <- 400 to 400 by 1){
    println(i+":")
    blexing_simp(WHILE_REGS, prog2 * i)
  } */

    /*
    for (i <- 2 to 5){
      for(j <- 1 to 3){
        println(i,j)
        small_de = i
        usual_de = i + j
        big_de = i + 2*j 
        blexing_simp(AWHILE_REGS, prog2 * 100)
      }
    }*/

  /*
  println("Tokens of prog2")
  println(tokenise(WHILE_REGS, prog2).mkString("\n"))

  val fib_tokens = tokenise(WHILE_REGS, prog2)
  fib_tokens.map{case (s1, s2) => (escape(s1), escape(s2))}.mkString(",\n")


  val test_tokens = tokenise(WHILE_REGS, prog3)
  test_tokens.map{case (s1, s2) => (escape(s1), escape(s2))}.mkString(",\n")
  */

  /*
  println("time test for blexing_simp")
  for (i <- 1 to 1 by 1) {
    lexing_simp(WHILE_REGS, prog2 * i)
    blexing_simp(WHILE_REGS, prog2 * i)
    for( j <- 0 to each_simp_timeb.length - 1){
      if( each_simp_timeb(j)/each_simp_time(j) >= 10.0 )
        println(j, each_simp_timeb(j), each_simp_time(j))
    }
  }
  */


  //--------------------------------------------------------------------------------------------------------END OF NON-BITCODE PART (TESTING)



  def clear() = {
    print("")
    //print("\33[H\33[2J")
  }

  //testing the two lexings produce the same value
  //enumerates strings of length n over alphabet cs
  def strs(n: Int, cs: String) : Set[String] = {
    if (n == 0) Set("")
    else {
      val ss = strs(n - 1, cs)
      ss ++
      (for (s <- ss; c <- cs.toList) yield c + s)
    }
  }
  def enum(n: Int, s: String) : Stream[Rexp] = n match {
    case 0 => ZERO #:: ONE #:: s.toStream.map(CHAR)
    case n => {  
      val rs = enum(n - 1, s)
      rs #:::
      (for (r1 <- rs; r2 <- rs) yield ALT(r1, r2)) #:::
      (for (r1 <- rs; r2 <- rs) yield SEQ(r1, r2)) #:::
      (for (r1 <- rs) yield STAR(r1))
    }
  }

  //tests blexing and lexing
  def tests_blexer_simp(ss: Set[String])(r: Rexp) = {
    clear()
    //println(s"Testing ${r}")
    for (s <- ss.par) yield {
      val res1 = Try(Some(lexing_simp(r, s))).getOrElse(None)
      val res2 = Try(Some(super_blexing_simp(r, s))).getOrElse(None)
      if (res1 != res2) println(s"Disagree on ${r} and ${s}")
      if (res1 != res2) println(s"   ${res1} !=  ${res2}")
      if (res1 != res2) Some((r, s)) else None
    }
  }



  
  /*
  def single_expression_explorer(ar: ARexp, ss: Set[String]): Unit = {
    for (s <- ss){
      
      val der_res = bder(c, ar) 
      val simp_res = bsimp(der_res)
      println(asize(der_res))
      println(asize(simp_res))
      single_expression_explorer(simp_res, (sc - c))
    }
  }*/

  //single_expression_explorer(internalise(("c"~("a"+"b"))%) , Set('a','b','c'))


}

import Rexp.Bits
abstract class ARexp 
case object AZERO extends ARexp
case class AONE(bs: Bits) extends ARexp
case class ACHAR(bs: Bits, f: Char) extends ARexp
case class AALTS(bs: Bits, rs: List[ARexp]) extends ARexp 
case class ASEQ(bs: Bits, r1: ARexp, r2: ARexp) extends ARexp 
case class ASTAR(bs: Bits, r: ARexp) extends ARexp 



abstract class Val
case object Empty extends Val
case class Chr(c: Char) extends Val
case class Sequ(v1: Val, v2: Val) extends Val
case class Left(v: Val) extends Val
case class Right(v: Val) extends Val
case class Stars(vs: List[Val]) extends Val
case class Rec(x: String, v: Val) extends Val
//case class Pos(i: Int, v: Val) extends Val
case object Prd extends Val