corr_pr_sketch.tex
changeset 8 e67c0ea1ca73
child 9 2c02d27ec0a3
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/corr_pr_sketch.tex	Thu Mar 21 13:26:07 2019 +0000
@@ -0,0 +1,276 @@
+\documentclass{article}
+\usepackage[utf8]{inputenc}
+\usepackage[english]{babel}
+\usepackage{listings}
+ \usepackage{amsthm}
+ \usepackage[margin=0.5in]{geometry}
+ 
+\theoremstyle{theorem}
+\newtheorem{theorem}{Theorem}
+
+\theoremstyle{lemma}
+\newtheorem{lemma}{Lemma}
+
+\theoremstyle{definition}
+ \newtheorem{definition}{Definition}
+\begin{document}
+This is a sketch proof for the correctness of the algorithm ders\_simp.
+\section{Function Definitions}
+
+\begin{definition}{Bits}
+\begin{verbatim}
+abstract class Bit
+case object Z extends Bit
+case object S extends Bit
+case class C(c: Char) extends Bit
+
+type Bits = List[Bit]
+\end{verbatim}
+\end{definition}
+
+\begin{definition}{Annotated Regular Expressions}
+\begin{verbatim}
+abstract class ARexp 
+case object AZERO extends ARexp
+case class AONE(bs: Bits) extends ARexp
+case class ACHAR(bs: Bits, f: Char) extends ARexp
+case class AALTS(bs: Bits, rs: List[ARexp]) extends ARexp 
+case class ASEQ(bs: Bits, r1: ARexp, r2: ARexp) extends ARexp 
+case class ASTAR(bs: Bits, r: ARexp) extends ARexp 
+\end{verbatim}
+\end{definition}
+
+\begin{definition}{bnullable}
+\begin{verbatim}
+  def bnullable (r: ARexp) : Boolean = r match {
+    case AZERO => false
+    case AONE(_) => true
+    case ACHAR(_,_) => false
+    case AALTS(_, rs) => rs.exists(bnullable)
+    case ASEQ(_, r1, r2) => bnullable(r1) && bnullable(r2)
+    case ASTAR(_, _) => true
+  }
+\end{verbatim}
+\end{definition}
+
+\begin{definition}{ders\_simp}
+\begin{verbatim}
+def ders_simp(r: ARexp, s: List[Char]): ARexp = {
+ s match {
+   case Nil => r 
+   case c::cs => ders_simp(bsimp(bder(c, r)), cs)
+ }
+}\end{verbatim}
+\end{definition}
+
+\begin{definition}{bder}
+\begin{verbatim}
+def bder(c: Char, r: ARexp) : ARexp = r match {
+ case AZERO => AZERO
+ case AONE(_) => AZERO
+ case ACHAR(bs, f) => if (c == f) AONE(bs:::List(C(c))) else AZERO
+ case AALTS(bs, rs) => AALTS(bs, rs.map(bder(c, _)))
+ case ASEQ(bs, r1, r2) => {
+  if (bnullable(r1)) AALT(bs, ASEQ(Nil, bder(c, r1), r2), fuse(mkepsBC(r1), bder(c, r2)))
+  else ASEQ(bs, bder(c, r1), r2)
+  }
+ case ASTAR(bs, r) => ASEQ(bs, fuse(List(S), bder(c, r)), ASTAR(Nil, r))
+}
+\end{verbatim}
+\end{definition}
+
+\begin{definition}{bsimp}
+\begin{verbatim}
+  def bsimp(r: ARexp): ARexp = r match {
+    case ASEQ(bs1, r1, r2) => (bsimp(r1), bsimp(r2)) match {
+        case (AZERO, _) => AZERO
+        case (_, AZERO) => AZERO
+        case (AONE(bs2), r2s) => fuse(bs1 ++ bs2, r2s)
+        case (r1s, r2s) => ASEQ(bs1, r1s, r2s)
+    }
+    case AALTS(bs1, rs) => {
+      val rs_simp = rs.map(bsimp)
+      val flat_res = flats(rs_simp)
+      val dist_res = distinctBy(flat_res, erase)
+      dist_res match {
+        case Nil => AZERO
+        case s :: Nil => fuse(bs1, s)
+        case rs => AALTS(bs1, rs)  
+      }
+    }
+    //case ASTAR(bs, r) => ASTAR(bs, bsimp(r))
+    case r => r
+  }
+\end{verbatim}
+\end{definition}
+
+\begin{definition}{sub-parts of bsimp}
+\begin{itemize}
+\item{flats}\\
+flattens the list.
+\item{dB}\\
+means distinctBy
+\item{Co}\\
+The last matching clause of the function bsimp, namely
+      dist\_res match {
+        case Nil => AZERO
+        case s :: Nil => fuse(bs1, s)
+        case rs => AALTS(bs1, rs)  
+      }
+\end{itemize}
+\end{definition}
+
+\begin{definition}{fuse}
+\begin{verbatim}
+  def fuse(bs: Bits, r: ARexp) : ARexp = r match {
+    case AZERO => AZERO
+    case AONE(cs) => AONE(bs ++ cs)
+    case ACHAR(cs, f) => ACHAR(bs ++ cs, f)
+    case AALTS(cs, rs) => AALTS(bs ++ cs, rs)
+    case ASEQ(cs, r1, r2) => ASEQ(bs ++ cs, r1, r2)
+    case ASTAR(cs, r) => ASTAR(bs ++ cs, r)
+  }
+\end{verbatim}
+\end{definition}
+
+
+\begin{definition}{mkepsBC}
+\begin{verbatim}
+  def mkepsBC(r: ARexp) : Bits = r match {
+    case AONE(bs) => bs
+    case AALTS(bs, rs) => {
+      val n = rs.indexWhere(bnullable)
+      bs ++ mkepsBC(rs(n))
+    }
+    case ASEQ(bs, r1, r2) => bs ++ mkepsBC(r1) ++ mkepsBC(r2)
+    case ASTAR(bs, r) => bs ++ List(Z)
+  }
+\end{verbatim}
+\end{definition}
+
+\begin{definition}{mkepsBC equicalence}
+\\
+Given 2 nullable annotated regular expressions r1, r2, if mkepsBC(r1) == mkepsBC(r2)
+then r1 and r2 are mkepsBC equivalent, denoted as r1 $\sim_{m\epsilon}$ r2
+\end{definition}
+
+\begin{definition}{shorthand notation for ders}
+\\For the sake of reducing verbosity, we sometimes use the shorthand notation
+$d_{c}(r)$ for the function application bder(c, r) and $s(r)$(s here stands for simplification) for the function application bsimp(r) .
+\\We omit the subscript when it is clear from context what that character is and write $d(r)$ instead of $d_{c}(r)$. 
+\\And we omit the parentheses when no confusion can be caused. For example ders\_simp(c, r) can be written as $s(d_{c}(r))$ or even $s d r$ as we know the derivative operation is w.r.t the character c. Here the s and d are more like operators that take an annotated regular expression as an input and return an annotated regular expression as an output
+
+\end{definition}
+
+\begin{definition}{mkepsBC invariant manipulation of bits and notation}\\
+ALTS(bs, ALTS(bs1, rs1), ALTS(bs2, rs2)) $\sim_{m\epsilon}$ ALTS(bs, rs1.map(fuse(bs1, \_)) ++ rs2.map(fuse(bs2, \_)) ). \\
+We also use $bs2>>rs2 $ as a shorthand notation for rs2.map(fuse(bs2,\_)).
+
+\end{definition}
+
+\begin{definition}{distinctBy operation expressed in a different way--how it transforms the list}\\
+Given two lists rs1 and rs2, we define the operation $--$:\\
+$rs1 -- rs2 := [r \in rs1 |  r \notin rs2]$
+Note that the order is preserved as in the original list.
+\end{definition}
+
+
+\section{Main Result}
+\begin{lemma}{simplification function does not simplify an already simplified regex}\\
+bsimp(r) == bsimp(bsimp(r)) holds for any annotated regular expression r.
+\end{lemma}
+
+\begin{lemma}{simp and mkeps}\\
+When r is nullable, we have that
+mkeps(bsimp(r)) == mkeps(r)
+\end{lemma}
+
+\begin{lemma}{mkeps equivalence  w.r.t some syntactically different regular expressions(1 ALTS)}\\
+When one of the 2 regular expressions $s(r_1)$ and $s(r_2)$ is ALTS(bs1, rs1), we have that $ds(ALTS(bs, r1, r2)) \sim_{m\epsilon} d(ALTS(bs, sr_1, sr_2))$
+\end{lemma}
+\begin{proof}
+By opening up one of the alts and show no additional changes are made.
+\end{proof}
+
+\begin{lemma}{mkepsBC equivalence w.r.t syntactically different regular expressions(2 ALTS)}\\
+$sr_1 = ALTS(bs1, rs1)$ and $sr_2 = ALTS(bs2, rs2)$ we have  $  d(sr_1 +sr_2 ) \sim_{m\epsilon} d(ALTS(bs, bs1>>rs1 ++ bs2>>rs2))$ 
+\end{lemma}
+\begin{proof}
+We are just fusing bits inside here, there is no other structural change.
+\end{proof}
+
+\begin{lemma}{mkepsBC equivalence w.r.t syntactically different regular expressions(2 ALTS+ some deletion)}\\
+$d Co(ALTS(bs, dB(bs1>>rs1 ++ bs2>>rs2))) \sim_{m\epsilon} d Co(ALTS(bs, dB(bs1>>rs1 ++ ((bs2>>rs2)--rs1)        ))) $ 
+\end{lemma}
+\begin{proof}
+The removed parts have already appeared before in $rs_1$, so if any of them is truly nullable and is chosen as the mkeps path, it will have been traversed through in its previous counterpart.\\
+(We probably need to switch the position of lemma5 and lemma6)
+\end{proof}
+
+\begin{lemma}{after opening two previously simplified alts up into terms, length must exceed 2}\\
+ $d Co(ALTS(bs, rs        )) \sim_{m\epsilon} d(ALTS(bs, rs))$ if $rs$ is a list of length greater than or equal to 2.
+\end{lemma}
+\begin{proof}
+As suggested by the title of this lemma
+\end{proof}
+
+
+
+
+
+
+\begin{theorem}{Correctness Result}
+
+\begin{itemize}
+
+\item{}
+When s is a string in the language L(ar), \\
+ders\_simp(ar, s)  $\sim_{m\epsilon}$ ders(ar, s), \\
+\item{}
+when s is not a string of the language L(ar)
+ders\_simp(ar, s) is not nullable
+\end{itemize}
+\end{theorem}
+
+\begin{proof}{Split into 2 parts.}
+\begin{itemize}
+\item
+
+When we have an annotated regular expression ar and a string s that matches ar, by the correctness of the algorithm ders, we have that ders(ar, s) is nullable, and that mkepsBC will extract the desired bits for decoding the correct value v for the matching, and v is a POSIX value. Now we prove that mkepsBC(ders\_simp(ar, s)) yields the same bitsequence.
+\\
+We first open up the ders\_simp function into nested alternating sequences of ders and simp.
+Assume that s = $c_1...c_n$($n \geq 1$ ) where each of the $c_i$ are characters. 
+Then $ders\_simp(ar, s)$ = $s(d_{c_n}(...s(d_{c_1}(r))...))$ = $sdsd......sdr$. If we can prove that
+$sdr \sim_{m\epsilon} dsr$ holds for any regular expression and any character, then we are done. This is because then we can push ders operation inside and move simp operation outside and have that $sdsd...sdr \sim_{m\epsilon} ssddsdsd...sdr \sim_{m\epsilon} ... \sim_{m\epsilon} s....sd....dr$ and using lemma1 we have that $s...sd....dr = sd...dr$. By lemma2, we have $RHS \sim_{m\epsilon} d...dr$.\\
+Now we proceed to prove that $sdr \sim_{m\epsilon} dsr$. This can be reduced to proving $dr \sim_{m\epsilon} dsr$ as we know that $dr \sim_{m\epsilon} sdr$ by lemma2.\\
+
+we use an induction proof. Base cases are omitted. Here are the 3 inductive cases.
+\begin{itemize}
+
+\item{$r_1+r_2$}
+$r_1+r_2$\\
+The most difficult case is when $sr1$ and $sr2$ are both ALTS, so that they will be opened up in the flats function and some terms in sr2 might be deleted. Or otherwise we can use the argument that $d(r_1+r_2) = dr_1 + dr_2  \sim_{m\epsilon} dsr_1 + dsr_2 \sim_{m\epsilon} ds(r_1+r_2)$,
+ the last equivalence being established by lemma3.
+When $s(r_1), s(r_2)$ are both ALTS, we have to be more careful for the last equivalence step, namelly, $dsr_1 + dsr_2 \sim_{m\epsilon} ds(r_1+r_2)$. \\
+We have that $LHS = dsr_1 + dsr_2 = d(sr_1 +sr_2)$. Since $sr_1 = ALTS(bs1, rs1)$ and $sr_2 = ALTS(bs2, rs2)$ we have  $  d(sr_1 +sr_2 ) \sim_{m\epsilon} d(ALTS(bs, bs1>>rs1 ++ bs2>>rs2))$ by lemma4.
+On the other hand, $RHS = ds(ALTS(bs, r1, r2)) \sim_{m\epsilon}d Co(ALTS(bs, dB(flats(s(r1), s(r2))))) == d Co(ALTS(bs, dB(bs1>>rs1 ++ bs2>>rs2)))$ by definition of bsimp and flats.\\  $d Co(ALTS(bs, dB(bs1>>rs1 ++ bs2>>rs2))) \sim_{m\epsilon} d Co(ALTS(bs, (bs1>>rs1 ++ ((bs2>>rs2)--rs1)        ))) $ by lemma5.\\ $d Co(ALTS(bs, (bs1>>rs1 ++ ((bs2>>rs2)--rs1)        ))) \sim_{m\epsilon} d(ALTS(bs, bs1>>rs1 ++ (bs2>>rs2)--rs1))$ by lemma6. \\
+ Using lemma5 again, we have  $d(ALTS(bs, bs1>>rs1 ++ (bs2>>rs2)--rs1)) \sim_{m\epsilon} d(ALTS(bs, bs1>>rs1 ++ bs2>>rs2))$.\\
+ This completes the proof.
+\item{$r*$}\\
+s(r*) = s(r).
+\item{$r1.r2$}\\
+using previous.
+
+\end{itemize}
+\item
+Proof of second part of the theorem: use a similar structure of argument as in the first part.
+\end{itemize}
+\end{proof}
+
+\end{document}
+
+%The second part might still need some more development.
+%When s is not in the set L(ar), we have that s = s1@s2 s.t. s1 $\in$ L(ar), and any longer string that is a prefix of s does not belong to L(ar).\\
+%By first part of proof, we have ders(ar, s1) $\sim_{m\epsilon}$ ders\_simp(ar, s1)
+%.....somehow show that by correctness, der(c, ders\_simp(ar, s1)) must be not nullable. But this will need that L(ders(ar, s1)) == L(ders\_simp(ar, s1)). By part 1 of proof we only have that for any string s1c s.t. s1c $\in$ L(ar) (which is equivalent to s $\in$ L(ders(ar, s1))), s is also in L(ders\_simp(ar, s1)). That is an inclusion, not an equality. c not in L(ders(ar, s1)) does not imply c not in L(ders\_simp(ar, s1))
+%So this path stuck here.