--- a/etnms/etnms.tex Wed Feb 05 10:58:13 2020 +0000
+++ b/etnms/etnms.tex Wed Feb 05 11:11:36 2020 +0000
@@ -441,7 +441,7 @@
\noindent
where $bs$ stands for bitcodes, $a$ for $\bold{a}$nnotated regular
expressions and $as$ for a list of annotated regular expressions.
-The alternative constructor($\textit{ALTS}$) has been generalized to
+The alternative constructor($\oplus$) has been generalized to
accept a list of annotated regular expressions rather than just 2.
We will show that these bitcodes encode information about
the (POSIX) value that should be generated by the Sulzmann and Lu
@@ -456,16 +456,16 @@
%\begin{definition}
\begin{center}
\begin{tabular}{lcl}
- $(\ZERO)^\uparrow$ & $\dn$ & $\textit{ZERO}$\\
- $(\ONE)^\uparrow$ & $\dn$ & $\textit{ONE}\,[]$\\
- $(c)^\uparrow$ & $\dn$ & $\textit{CHAR}\,[]\,c$\\
+ $(\ZERO)^\uparrow$ & $\dn$ & $\ZERO$\\
+ $(\ONE)^\uparrow$ & $\dn$ & $_{[]}\ONE$\\
+ $(c)^\uparrow$ & $\dn$ & $_{[]}{\bf c}$\\
$(r_1 + r_2)^\uparrow$ & $\dn$ &
- $\textit{ALTS}\;[]\,List((\textit{fuse}\,[\Z]\,r_1^\uparrow),\,
- (\textit{fuse}\,[\S]\,r_2^\uparrow))$\\
+ $_{[]}\oplus[\textit{fuse}\,[0]\,r_1^\uparrow,\,
+ \textit{fuse}\,[1]\,r_2^\uparrow]$\\
$(r_1\cdot r_2)^\uparrow$ & $\dn$ &
- $\textit{SEQ}\;[]\,r_1^\uparrow\,r_2^\uparrow$\\
+ $_{[]}r_1^\uparrow \cdot r_2^\uparrow$\\
$(r^*)^\uparrow$ & $\dn$ &
- $\textit{STAR}\;[]\,r^\uparrow$\\
+ $_{[]}(r^\uparrow)^*$\\
\end{tabular}
\end{center}
%\end{definition}