--- a/etnms/etnms.tex Thu Feb 06 10:49:23 2020 +0000
+++ b/etnms/etnms.tex Sat Feb 08 21:34:50 2020 +0000
@@ -1376,10 +1376,42 @@
\noindent
$\rup\backslash_{simp} \, s$ is equal to
-$ _1(_{11}a^* + _0\ONE) $
-$\rup\backslash_{simp} \, s \neq \simp(\rup\backslash s)$,
- whereas this does not happen for the old
+$ _1(_{011}a^* + _1\ONE) $ whereas
+$ \simp(\rup\backslash s) = (_{1011}a^* + _{11}\ONE)$.
+This discrepancy does not appear for the old
version of $\simp$.
+
+Why?
+
+During the first derivative operation,
+\begin{center}
+$\rup\backslash a=( _0[ \ONE\cdot {\bf b}] + _1( _0[ _1\ONE \cdot {\bf a}^*] + [ \ONE \cdot {\bf a}]) )$,
+\end{center}
+\noindent
+ the second derivative gives us
+ \begin{center}
+$\rup\backslash a=(_0( [\ZERO\cdot {\bf b}] + 0) + _1( _0( [\ZERO\cdot {\bf a}^*] + _1[ _1\ONE \cdot {\bf a}^*]) + _1( [\ZERO \cdot {\bf a}] + \ONE) ))$,
+\end{center}
+
+\noindent
+and this simplifies to
+\begin{center}
+$ _1(_{011}{\bf a}^* + _1\ONE) $
+\end{center}
+
+If, after the first derivative we apply simplification we get
+$(_0{\bf b} + _{101}{\bf a}^* + _{11}{\bf a} )$,
+and we do another derivative, getting
+$(\ZERO + (_{101}(\ONE \cdot _1{\bf a}^*)+_{11}\ONE)$,
+which simplifies to
+\begin{center}
+$ (_{1011}a^* + _{11}\ONE) $
+\end{center}
+
+
+
+
+
We have changed the algorithm to suppress the old
counterexample, but this gives rise to new counterexamples.
This dilemma causes this amendment not a successful