etnms/etnms.tex
changeset 132 69292c2b54d8
parent 131 b6984212cf87
child 133 0172d422e93e
--- a/etnms/etnms.tex	Sat Feb 08 22:24:21 2020 +0000
+++ b/etnms/etnms.tex	Sun Feb 16 22:28:26 2020 +0000
@@ -473,7 +473,7 @@
   $\textit{a}$ & $::=$  & $\ZERO$\\
                   & $\mid$ & $_{bs}\ONE$\\
                   & $\mid$ & $_{bs}{\bf c}$\\
-                  & $\mid$ & $_{bs}\oplus\,as$\\
+                  & $\mid$ & $_{bs}\sum\,as$\\
                   & $\mid$ & $_{bs}a_1\cdot a_2$\\
                   & $\mid$ & $_{bs}a^*$
 \end{tabular}    
@@ -483,7 +483,7 @@
 \noindent
 where $bs$ stands for bitcodes, $a$  for $\bold{a}$nnotated regular
 expressions and $as$ for a list of annotated regular expressions.
-The alternative constructor($\oplus$) has been generalized to 
+The alternative constructor($\sum$) has been generalized to 
 accept a list of annotated regular expressions rather than just 2.
 We will show that these bitcodes encode information about
 the (POSIX) value that should be generated by the Sulzmann and Lu
@@ -502,7 +502,7 @@
   $(\ONE)^\uparrow$ & $\dn$ & $_{[]}\ONE$\\
   $(c)^\uparrow$ & $\dn$ & $_{[]}{\bf c}$\\
   $(r_1 + r_2)^\uparrow$ & $\dn$ &
-  $_{[]}\oplus[\textit{fuse}\,[0]\,r_1^\uparrow,\,
+  $_{[]}\sum[\textit{fuse}\,[0]\,r_1^\uparrow,\,
   \textit{fuse}\,[1]\,r_2^\uparrow]$\\
   $(r_1\cdot r_2)^\uparrow$ & $\dn$ &
          $_{[]}r_1^\uparrow \cdot r_2^\uparrow$\\
@@ -526,8 +526,8 @@
      $_{bs @ bs'}\ONE$\\
   $\textit{fuse}\;bs\;_{bs'}{\bf c}$ & $\dn$ &
      $_{bs@bs'}{\bf c}$\\
-  $\textit{fuse}\;bs\,_{bs'}\oplus\textit{as}$ & $\dn$ &
-     $_{bs@bs'}\oplus\textit{as}$\\
+  $\textit{fuse}\;bs\,_{bs'}\sum\textit{as}$ & $\dn$ &
+     $_{bs@bs'}\sum\textit{as}$\\
   $\textit{fuse}\;bs\; _{bs'}a_1\cdot a_2$ & $\dn$ &
      $_{bs@bs'}a_1 \cdot a_2$\\
   $\textit{fuse}\;bs\,_{bs'}a^*$ & $\dn$ &
@@ -595,12 +595,12 @@
   $(_{bs}{\bf d})\,\backslash c$ & $\dn$ &
         $\textit{if}\;c=d\; \;\textit{then}\;
          _{bs}\ONE\;\textit{else}\;\ZERO$\\  
-  $(_{bs}\oplus \;\textit{as})\,\backslash c$ & $\dn$ &
-  $_{bs}\oplus\;(\textit{as.map}(\backslash c))$\\
+  $(_{bs}\sum \;\textit{as})\,\backslash c$ & $\dn$ &
+  $_{bs}\sum\;(\textit{as.map}(\backslash c))$\\
   $(_{bs}\;a_1\cdot a_2)\,\backslash c$ & $\dn$ &
      $\textit{if}\;\textit{bnullable}\,a_1$\\
-					       & &$\textit{then}\;_{bs}\oplus\,[(_{[]}\,(a_1\,\backslash c)\cdot\,a_2),$\\
-					       & &$\phantom{\textit{then},\;_{bs}\oplus\,}(\textit{fuse}\,(\textit{bmkeps}\,a_1)\,(a_2\,\backslash c))]$\\
+					       & &$\textit{then}\;_{bs}\sum\,[(_{[]}\,(a_1\,\backslash c)\cdot\,a_2),$\\
+					       & &$\phantom{\textit{then},\;_{bs}\sum\,}(\textit{fuse}\,(\textit{bmkeps}\,a_1)\,(a_2\,\backslash c))]$\\
   & &$\textit{else}\;_{bs}\,(a_1\,\backslash c)\cdot a_2$\\
   $(_{bs}a^*)\,\backslash c$ & $\dn$ &
       $_{bs}(\textit{fuse}\, [0] \; r\,\backslash c)\cdot
@@ -625,7 +625,7 @@
 head of the regular expression $a_2 \backslash c$ by fusing to it. The
 bitsequence $\textit{bs}$, which was initially attached to the
 first element of the sequence $a_1 \cdot a_2$, has
-now been elevated to the top-level of $\oplus$, as this information will be
+now been elevated to the top-level of $\sum$, as this information will be
 needed whichever way the sequence is matched---no matter whether $c$ belongs
 to $a_1$ or $ a_2$. After building these derivatives and maintaining all
 the lexing information, we complete the lexing by collecting the
@@ -637,10 +637,10 @@
 \begin{center}
 \begin{tabular}{lcl}
   $\textit{bmkeps}\,(_{bs}\ONE)$ & $\dn$ & $bs$\\
-  $\textit{bmkeps}\,(_{bs}\oplus a::\textit{as})$ & $\dn$ &
+  $\textit{bmkeps}\,(_{bs}\sum a::\textit{as})$ & $\dn$ &
      $\textit{if}\;\textit{bnullable}\,a$\\
   & &$\textit{then}\;bs\,@\,\textit{bmkeps}\,a$\\
-  & &$\textit{else}\;bs\,@\,\textit{bmkeps}\,(_{bs}\oplus \textit{as})$\\
+  & &$\textit{else}\;bs\,@\,\textit{bmkeps}\,(_{bs}\sum \textit{as})$\\
   $\textit{bmkeps}\,(_{bs} a_1 \cdot a_2)$ & $\dn$ &
      $bs \,@\,\textit{bmkeps}\,a_1\,@\, \textit{bmkeps}\,a_2$\\
   $\textit{bmkeps}\,(_{bs}a^*)$ & $\dn$ &
@@ -684,7 +684,7 @@
 expressions and strings. 
 
 One modification we introduced is to allow a list of annotated regular
-expressions in the $\oplus$ constructor. This allows us to not just
+expressions in the $\sum$ constructor. This allows us to not just
 delete unnecessary $\ZERO$s and $\ONE$s from regular expressions, but
 also unnecessary ``copies'' of regular expressions (very similar to
 simplifying $r + r$ to just $r$, but in a more general setting). Another
@@ -707,10 +707,10 @@
    &&$\quad\textit{case} \; (a_1', \ONE) \Rightarrow  \textit{fuse} \; bs \;  a_1'$ \\
    &&$\quad\textit{case} \; (a_1', a_2') \Rightarrow   _{bs}a_1' \cdot a_2'$ \\
 
-  $\textit{simp} \; (_{bs}\oplus \textit{as})$ & $\dn$ & $\textit{distinct}( \textit{flatten} ( \textit{map simp as})) \; \textit{match} $ \\
+  $\textit{simp} \; (_{bs}\sum \textit{as})$ & $\dn$ & $\textit{distinct}( \textit{flatten} ( \textit{map simp as})) \; \textit{match} $ \\
   &&$\quad\textit{case} \; [] \Rightarrow  \ZERO$ \\
    &&$\quad\textit{case} \; a :: [] \Rightarrow  \textit{fuse bs a}$ \\
-   &&$\quad\textit{case} \;  as' \Rightarrow _{bs}\oplus \textit{as'}$\\ 
+   &&$\quad\textit{case} \;  as' \Rightarrow _{bs}\sum \textit{as'}$\\ 
 
    $\textit{simp} \; a$ & $\dn$ & $\textit{a} \qquad \textit{otherwise}$   
 \end{tabular}    
@@ -722,16 +722,16 @@
 sequence, it will try to simplify its children regular expressions
 recursively and then see if one of the children turn into $\ZERO$ or
 $\ONE$, which might trigger further simplification at the current level.
-The most involved part is the $\oplus$ clause, where we use two
+The most involved part is the $\sum$ clause, where we use two
 auxiliary functions $\textit{flatten}$ and $\textit{distinct}$ to open up nested
 alternatives and reduce as many duplicates as possible. Function
 $\textit{distinct}$  keeps the first occurring copy only and remove all later ones
-when detected duplicates. Function $\textit{flatten}$ opens up nested $\oplus$s.
+when detected duplicates. Function $\textit{flatten}$ opens up nested $\sum$s.
 Its recursive definition is given below:
 
  \begin{center}
   \begin{tabular}{@{}lcl@{}}
-  $\textit{flatten} \; (_{bs}\oplus \textit{as}) :: \textit{as'}$ & $\dn$ & $(\textit{map} \;
+  $\textit{flatten} \; (_{bs}\sum \textit{as}) :: \textit{as'}$ & $\dn$ & $(\textit{map} \;
      (\textit{fuse}\;bs)\; \textit{as}) \; @ \; \textit{flatten} \; as' $ \\
   $\textit{flatten} \; \ZERO :: as'$ & $\dn$ & $ \textit{flatten} \;  \textit{as'} $ \\
     $\textit{flatten} \; a :: as'$ & $\dn$ & $a :: \textit{flatten} \; \textit{as'}$ \quad(otherwise) 
@@ -961,10 +961,10 @@
 \begin{tabular}{@{}l@{\hspace{2mm}}c@{\hspace{2mm}}l@{}}
   $\textit{retrieve}\,(_{bs}\ONE)\,\Empty$ & $\dn$ & $bs$\\
   $\textit{retrieve}\,(_{bs}{\bf c})\,(\Char\,d)$ & $\dn$ & $bs$\\
-  $\textit{retrieve}\,(_{bs}\oplus a::as)\,(\Left\,v)$ & $\dn$ &
+  $\textit{retrieve}\,(_{bs}\sum a::as)\,(\Left\,v)$ & $\dn$ &
      $bs \,@\, \textit{retrieve}\,a\,v$\\
-  $\textit{retrieve}\,(_{bs}\oplus a::as)\,(\Right\,v)$ & $\dn$ &
-  $\textit{bs} \,@\, \textit{retrieve}\,(_{[]}\oplus as)\,v$\\
+  $\textit{retrieve}\,(_{bs}\sum a::as)\,(\Right\,v)$ & $\dn$ &
+  $\textit{bs} \,@\, \textit{retrieve}\,(_{[]}\sum as)\,v$\\
   $\textit{retrieve}\,(_{bs}a_1\cdot a_2)\,(\Seq\,v_1\,v_2)$ & $\dn$ &
      $bs \,@\,\textit{retrieve}\,a_1\,v_1\,@\, \textit{retrieve}\,a_2\,v_2$\\
   $\textit{retrieve}\,(_{bs}a^*)\,(\Stars\,[])$ & $\dn$ &
@@ -1165,19 +1165,19 @@
 
 \noindent
 
-and the difinition of $\flatten$:
+and the definition of $\flatten$:
  \begin{center}
  \begin{tabular}{c c c}
  $\flatten \; []$ & $\dn$ & $[]$\\
  $\flatten \; \ZERO::rs$ & $\dn$ & $rs$\\
- $\flatten \;(_{\textit{bs}_1}\oplus \textit{rs}_1 ::rs)$ & $\dn$ & $(\map \, (\fuse \, \textit{bs}_1) \,\textit{rs}_1) ::: \flatten(rs)$\\
+ $\flatten \;(_{\textit{bs}_1}\sum \textit{rs}_1 ::rs)$ & $\dn$ & $(\map \, (\fuse \, \textit{bs}_1) \,\textit{rs}_1) ::: \flatten(rs)$\\
  $\flatten \; r :: rs$ & $\dn$ & $r::\flatten(rs)$
  \end{tabular}
  \end{center}
  
  \noindent
 If we call $\simp$ on $\rup\backslash a$, just as $\backslash_{simp}$
-requires, then we would go throught the third clause of 
+requires, then we would go through the third clause of 
 the sequence case:$\quad\textit{case} \;  (\ONE, a_2') \Rightarrow  \textit{fuse} \; bs \;  a_2'$.
 The $\ZERO$ of $(_0\ONE  + \ZERO)$ is thrown away 
 by $\flatten$ and 
@@ -1190,7 +1190,11 @@
  _0(_0 \ONE  +  _1(_1\ONE \cdot a^*))
  $, and this simplifies to $_0(_0 \ONE  +  _{11} a^*)$
  by the third clause of the alternative case:
- $\quad\textit{case} \;  as' \Rightarrow  \textit{ALTS}\;bs\;as'$.
+ \begin{center}
+ $\quad\textit{case} \;  as' \Rightarrow  _{bs}\sum{as'}$.
+ \end{center}
+ 
+ \noindent
 The outmost bit $_0$ stays with 
 the outmost regular expression, rather than being fused to
 its child regular expressions, as what we will later see happens
@@ -1240,8 +1244,8 @@
 \begin{center}
 \begin{tabular}{lcl}
 $D =\{ (r_1 \cdot r_2,\; [c_1c_2]) \mid $ & $\simp(r_2) = r_2, \simp(r_1 \backslash c_1) = \ONE,$\\
- $r_1 \; not \; \nullable, c_2 \in L(r_2),$ & $\exists \textit{rs},\textit{bs}.\;  r_2 \backslash c_2 = _{bs}{\oplus rs}$\\
-$\exists \textit{rs}_1. \; \simp(r_2 \backslash c_2) = _{bs}{\oplus \textit{rs}_1}$ &  $and \;\simp(r_1 \backslash [c_1c_2]) = \ZERO\}$\\
+ $r_1 \; not \; \nullable, c_2 \in L(r_2),$ & $\exists \textit{rs},\textit{bs}.\;  r_2 \backslash c_2 = _{bs}{\sum rs}$\\
+$\exists \textit{rs}_1. \; \simp(r_2 \backslash c_2) = _{bs}{\sum \textit{rs}_1}$ &  $and \;\simp(r_1 \backslash [c_1c_2]) = \ZERO\}$\\
 \end{tabular}
 \end{center}
 We take a pair $(r, \;s)$ from the set $D$.
@@ -1265,9 +1269,9 @@
 \end{center}
 which is equal to 
 \begin{center}
-$\simp \left[ \fuse \; \textit{bs}_2 \; _{bs}{\oplus rs} \right]$\\
-$=\simp \left[  \; _{bs_2++bs}{\oplus rs} \right]$\\
-$=  \; _{bs_2++bs}{\oplus \textit{rs}_1} $
+$\simp \left[ \fuse \; \textit{bs}_2 \; _{bs}{\sum rs} \right]$\\
+$=\simp \left[  \; _{bs_2++bs}{\sum rs} \right]$\\
+$=  \; _{bs_2++bs}{\sum \textit{rs}_1} $
 \end{center}
 \noindent
 by using the properties from the set $D$ again
@@ -1284,34 +1288,34 @@
 the following chain of equalities:
 \begin{center}
 $\simp(\rup \backslash s)= \simp \left[ ((r_1 \cdot r_2 )\backslash c_1) \backslash c_2 \right]= \simp\left[    \left(r_1 \backslash c_1\right) \cdot r_2  \big) \backslash c_2 \right]$\\
-$= \simp \left[ \oplus[\big( \left(r_1 \backslash c_1\right) \backslash c_2 \big) \cdot r_2 \; , \; \fuse \; (\bmkeps \;r_1\backslash c_1) \; r_2 \backslash c_2 ] \right]$,
+$= \simp \left[ \sum[\big( \left(r_1 \backslash c_1\right) \backslash c_2 \big) \cdot r_2 \; , \; \fuse \; (\bmkeps \;r_1\backslash c_1) \; r_2 \backslash c_2 ] \right]$,
 \end{center}
 \noindent
 as before, we call the bitcode returned by 
 $\bmkeps(r_1\backslash c_1)$ as
 $\textit{bs}_2$. 
 Also, $\simp(r_2 \backslash c_2)$ is 
-$_{bs}\oplus \textit{rs}_1$, 
+$_{bs}\sum \textit{rs}_1$, 
 and $( \left(r_1 \backslash c_1\right) \backslash c_2  \cdot r_2)$
 simplifies to $\ZERO$,
 so the above term can be expanded as
 \begin{center}
 \begin{tabular}{l}
-$\textit{distinct}(\flatten[\ZERO\;, \; _{\textit{bs}_2++\textit{bs}}\oplus \textit{rs}_1] ) \; \textit{match} $ \\
+$\textit{distinct}(\flatten[\ZERO\;, \; _{\textit{bs}_2++\textit{bs}}\sum \textit{rs}_1] ) \; \textit{match} $ \\
   $\textit{case} \; [] \Rightarrow  \ZERO$ \\
    $\textit{case} \; a :: [] \Rightarrow  \textit{\fuse \; \textit{bs} a}$ \\
-    $\textit{case} \;  as' \Rightarrow  _{[]}\oplus as'$\\ 
+    $\textit{case} \;  as' \Rightarrow  _{[]}\sum as'$\\ 
 \end{tabular}
 \end{center}
 \noindent
 Applying the definition of $\flatten$, we get
 \begin{center}
-$_{[]}\oplus (\textit{map} \; \fuse (\textit{bs}_2 ++ bs) rs_1)$
+$_{[]}\sum (\textit{map} \; \fuse (\textit{bs}_2 ++ bs) rs_1)$
 \end{center}
 \noindent
 compared to the result 
 \begin{center}
-$ \; _{bs_2++bs}{\oplus \textit{rs}_1} $
+$ \; _{bs_2++bs}{\sum \textit{rs}_1} $
 \end{center}
 \noindent
 Note how these two regular expressions only
@@ -1325,7 +1329,7 @@
 caused $\simp(\rup \backslash s)$ to
 generate the nested alternatives structure:
 \begin{center}
-$  \oplus[\ZERO \;, \; _{bs}\oplus \textit{rs} ]$
+$  \sum[\ZERO \;, \; _{bs}\sum \textit{rs} ]$
 \end{center}
 and this will always trigger the $\flatten$ to 
 spill out the inner alternative's bitcode $\textit{bs}$,
@@ -1340,9 +1344,9 @@
 Like, for the above regular expression, we might
 just delete the outer layer of alternative
 \begin{center}
-\st{$ {\oplus[\ZERO \;,}$} $_{bs}\oplus \textit{rs}$ \st{$]$}
+\st{$ {\sum[\ZERO \;,}$} $_{bs}\sum \textit{rs}$ \st{$]$}
 \end{center}
-and get $_{bs}\oplus \textit{rs}$ instead, without
+and get $_{bs}\sum \textit{rs}$ instead, without
 fusing the bits $\textit{bs}$ inside to every element 
 of $\textit{rs}$.
 This idea can be realized by making the following
@@ -1352,13 +1356,13 @@
    
   $\textit{simp}' \; (_{\textit{bs}}(a_1 \cdot a_2))$ & $\dn$ & $\textit{as} \; \simp \; \textit{was} \; \textit{before} $ \\
 
-  $\textit{simp}' \; (_{bs}\oplus as)$ & $\dn$ & \st{$\textit{distinct}( \textit{flatten} ( \textit{map simp as})) \; \textit{match} $} \\
+  $\textit{simp}' \; (_{bs}\sum as)$ & $\dn$ & \st{$\textit{distinct}( \textit{flatten} ( \textit{map simp as})) \; \textit{match} $} \\
   &&\st{$\quad\textit{case} \; [] \Rightarrow  \ZERO$} \\
    &&\st{$\quad\textit{case} \; a :: [] \Rightarrow  \textit{fuse bs a}$} \\
    &&\st{$\quad\textit{case} \;  as' \Rightarrow  \textit{ALTS}\;bs\;as'$}\\ 
    &&$\textit{if}(\textit{hollowAlternatives}( \textit{map \; simp \; as}))$\\
    &&$\textit{then} \; \fuse  \; \textit{bs}\; \textit{extractAlt}(\textit{map} \; \simp \; \textit{as} )$\\
-   &&$\textit{else} \; \simp(_{bs} \oplus \textit{as})$\\
+   &&$\textit{else} \; \simp(_{bs} \sum \textit{as})$\\
    
 
    $\textit{simp}' \; a$ & $\dn$ & $\textit{a} \qquad \textit{otherwise}$   
@@ -1369,23 +1373,23 @@
 given the definition of $\textit{hollowAlternatives}$ and  $\textit{extractAlt}$ :
 \begin{center}
 $\textit{hollowAlternatives}( \textit{rs}) \dn 
-\exists r = (_{\textit{bs}_1}\oplus \textit{rs}_1)  \in \textit{rs}.  \forall r' \in \textit{rs}, \;
+\exists r = (_{\textit{bs}_1}\sum \textit{rs}_1)  \in \textit{rs}.  \forall r' \in \textit{rs}, \;
 \textit{either} \; r' = \ZERO \; \textit{or} \; r' = r $
 $\textit{extractAlt}( \textit{rs}) \dn \textit{if}\big(
-\exists r = (_{\textit{bs}_1}\oplus \textit{rs}_1)  \in \textit{rs}.  \forall r' \in \textit{rs}, \;
+\exists r = (_{\textit{bs}_1}\sum \textit{rs}_1)  \in \textit{rs}.  \forall r' \in \textit{rs}, \;
 \textit{either} \; r' = \ZERO \; \textit{or} \; r' = r \big)\; \textit{then} \; \textit{return} \; r$
 \end{center}
 \noindent
 Basically, $\textit{hollowAlternatives}$ captures the feature of
 a list of regular expression of the shape 
 \begin{center}
-$  \oplus[\ZERO \;, \; _{bs}\oplus \textit{rs} ]$
+$  \sum[\ZERO \;, \; _{bs}\sum \textit{rs} ]$
 \end{center}
 and this means we can simply elevate the 
-inner regular expression $_{bs}\oplus \textit{rs}$
+inner regular expression $_{bs}\sum \textit{rs}$
  to the outmost
 and throw away the useless $\ZERO$s and
-the outer $\oplus$ wrapper.
+the outer $\sum$ wrapper.
 Using this new definition of simp, 
 under the example where  $r$ is the regular expression
 $(a+b)(a+a*)$ and $s$  is the string $aa$
@@ -1460,9 +1464,9 @@
 $\textit{sub}(r_1 + r_2) \dn \textit{sub}(r_1) \cup \textit{sub}(r_2) \cup \{r_1+r_2\}$\\
 \end{center}
 $\textit{good}(r) \dn r \neq \ZERO \land \\
-\forall r' \in \textit{sub}(r), \textit{if} \; r' = _{bs_1}\oplus(rs_1), \;
+\forall r' \in \textit{sub}(r), \textit{if} \; r' = _{bs_1}\sum(rs_1), \;
 \textit{then} \nexists r'' \in \textit{rs}_1 \; s.t.\;
-r'' = _{bs_2}\oplus \textit{rs}_2 $
+r'' = _{bs_2}\sum \textit{rs}_2 $
 
 The properties are mainly the ones below:
 \begin{itemize}
@@ -1507,12 +1511,12 @@
  $\textit{bs} @ \textit{bs}_1 @ \textit{bs}_2$\\
 
  $\textit{if} \; r \gg \textit{bs}_1$ &  & $\textit{then}$  &
- $_{bs}{\oplus(r :: \textit{rs}})$ & 
+ $_{bs}{\sum(r :: \textit{rs}})$ & 
  $\gg$ & 
  $\textit{bs} @ \textit{bs}_1 $\\ 
 
- $\textit{if} \; _{bs}(\oplus \textit{rs}) \gg \textit{bs} @ \textit{bs}_1$ &  & $\textit{then}$  &
- $_{bs}{\oplus(r :: \textit{rs}})$ & 
+ $\textit{if} \; _{bs}(\sum \textit{rs}) \gg \textit{bs} @ \textit{bs}_1$ &  & $\textit{then}$  &
+ $_{bs}{\sum(r :: \textit{rs}})$ & 
  $\gg$ & 
  $\textit{bs} @ \textit{bs}_1 $\\