equal
deleted
inserted
replaced
1374 $(ab+(a^*+aa))$ and $s$ is the string $aa$ |
1374 $(ab+(a^*+aa))$ and $s$ is the string $aa$ |
1375 \end{center} |
1375 \end{center} |
1376 |
1376 |
1377 \noindent |
1377 \noindent |
1378 $\rup\backslash_{simp} \, s$ is equal to |
1378 $\rup\backslash_{simp} \, s$ is equal to |
1379 $ _0(_0\ONE + _{11}a^*)$ |
1379 $ _1(_{11}a^* + _0\ONE) $ |
1380 $\rup\backslash_{simp} \, s \neq \simp(\rup\backslash s)$, |
1380 $\rup\backslash_{simp} \, s \neq \simp(\rup\backslash s)$, |
1381 whereas this does not happen for the old |
1381 whereas this does not happen for the old |
1382 version of $\simp$. |
1382 version of $\simp$. |
1383 We have changed the algorithm to suppress the old |
1383 We have changed the algorithm to suppress the old |
1384 counterexample, but this gives rise to new counterexamples. |
1384 counterexample, but this gives rise to new counterexamples. |