etnms/etnms.tex
changeset 138 eff05af278c0
parent 137 93a34bbedebe
child 139 13a42b418eab
equal deleted inserted replaced
137:93a34bbedebe 138:eff05af278c0
     1 \documentclass[a4paper,UKenglish]{lipics}
     1 \documentclass[a4paper,UKenglish]{lipics}
     2 \usepackage{graphic}
     2 \usepackage{graphic}
     3 \usepackage{data}
     3 \usepackage{data}
     4 \usepackage{tikz-cd}
     4 \usepackage{tikz-cd}
     5 \usepackage{tikz}
     5 \usepackage{tikz}
     6 \usetikzlibrary{graphs}
     6 
     7 \usetikzlibrary{graphdrawing}
     7 %\usetikzlibrary{graphs}
     8 \usegdlibrary{trees}
     8 %\usetikzlibrary{graphdrawing}
       
     9 %\usegdlibrary{trees}
       
    10 
     9 %\usepackage{algorithm}
    11 %\usepackage{algorithm}
    10 \usepackage{amsmath}
    12 \usepackage{amsmath}
    11 \usepackage{xcolor}
    13 \usepackage{xcolor}
    12 \usepackage[noend]{algpseudocode}
    14 \usepackage[noend]{algpseudocode}
    13 \usepackage{enumitem}
    15 \usepackage{enumitem}
  1549 we say that the regular expression $r$ contains
  1551 we say that the regular expression $r$ contains
  1550 the bitcode $\textit{bs}$, written 
  1552 the bitcode $\textit{bs}$, written 
  1551 $r \gg \textit{bs}$.
  1553 $r \gg \textit{bs}$.
  1552 The $\gg$ operator with the
  1554 The $\gg$ operator with the
  1553 regular expression $r$ may also be seen as a 
  1555 regular expression $r$ may also be seen as a 
  1554 
  1556 regular language by itself on the alphabet
  1555 \end{tikzpicture}
  1557 $\Sigma = {0,1}$.
  1556 \end{center}
  1558 The definition of contains relation
       
  1559 is given in an inductive form, similar to that
       
  1560 of regular expressions, it might not be surprising 
       
  1561 that the set it denotes contains basically 
       
  1562  everything a regular expression can 
       
  1563 produce during the derivative and lexing process.
       
  1564 This can be seen in the subsequent lemmas we have
       
  1565 proved about contains:
       
  1566 \begin{itemize}
       
  1567 \item
       
  1568 $\textit{if} \models v:r \; \textit{then} \; \rup \gg \textit{code}(v)$
       
  1569 \end{itemize}
  1557 \subsection{the $\textit{ders}_2$ Function}
  1570 \subsection{the $\textit{ders}_2$ Function}
  1558 If we want to prove the result 
  1571 If we want to prove the result 
  1559 \begin{center}
  1572 \begin{center}
  1560 	$ \textit{blexer}\_{simp}(r, \; s) =  \textit{blexer}(r, \; s)$
  1573 	$ \textit{blexer}\_{simp}(r, \; s) =  \textit{blexer}(r, \; s)$
  1561 \end{center}
  1574 \end{center}