etnms/etnms.tex
changeset 116 dfcad6f19e06
parent 115 5c8afe4a8090
child 117 0acf6b58236e
equal deleted inserted replaced
115:5c8afe4a8090 116:dfcad6f19e06
   439 %(in \textit{ALTS})
   439 %(in \textit{ALTS})
   440 
   440 
   441 \noindent
   441 \noindent
   442 where $bs$ stands for bitcodes, $a$  for $\bold{a}$nnotated regular
   442 where $bs$ stands for bitcodes, $a$  for $\bold{a}$nnotated regular
   443 expressions and $as$ for a list of annotated regular expressions.
   443 expressions and $as$ for a list of annotated regular expressions.
   444 The alternative constructor($\textit{ALTS}$) has been generalized to 
   444 The alternative constructor($\oplus$) has been generalized to 
   445 accept a list of annotated regular expressions rather than just 2.
   445 accept a list of annotated regular expressions rather than just 2.
   446 We will show that these bitcodes encode information about
   446 We will show that these bitcodes encode information about
   447 the (POSIX) value that should be generated by the Sulzmann and Lu
   447 the (POSIX) value that should be generated by the Sulzmann and Lu
   448 algorithm.
   448 algorithm.
   449 
   449 
   454 defined as follows:
   454 defined as follows:
   455 
   455 
   456 %\begin{definition}
   456 %\begin{definition}
   457 \begin{center}
   457 \begin{center}
   458 \begin{tabular}{lcl}
   458 \begin{tabular}{lcl}
   459   $(\ZERO)^\uparrow$ & $\dn$ & $\textit{ZERO}$\\
   459   $(\ZERO)^\uparrow$ & $\dn$ & $\ZERO$\\
   460   $(\ONE)^\uparrow$ & $\dn$ & $\textit{ONE}\,[]$\\
   460   $(\ONE)^\uparrow$ & $\dn$ & $_{[]}\ONE$\\
   461   $(c)^\uparrow$ & $\dn$ & $\textit{CHAR}\,[]\,c$\\
   461   $(c)^\uparrow$ & $\dn$ & $_{[]}{\bf c}$\\
   462   $(r_1 + r_2)^\uparrow$ & $\dn$ &
   462   $(r_1 + r_2)^\uparrow$ & $\dn$ &
   463   $\textit{ALTS}\;[]\,List((\textit{fuse}\,[\Z]\,r_1^\uparrow),\,
   463   $_{[]}\oplus[\textit{fuse}\,[0]\,r_1^\uparrow,\,
   464   (\textit{fuse}\,[\S]\,r_2^\uparrow))$\\
   464   \textit{fuse}\,[1]\,r_2^\uparrow]$\\
   465   $(r_1\cdot r_2)^\uparrow$ & $\dn$ &
   465   $(r_1\cdot r_2)^\uparrow$ & $\dn$ &
   466          $\textit{SEQ}\;[]\,r_1^\uparrow\,r_2^\uparrow$\\
   466          $_{[]}r_1^\uparrow \cdot r_2^\uparrow$\\
   467   $(r^*)^\uparrow$ & $\dn$ &
   467   $(r^*)^\uparrow$ & $\dn$ &
   468          $\textit{STAR}\;[]\,r^\uparrow$\\
   468          $_{[]}(r^\uparrow)^*$\\
   469 \end{tabular}    
   469 \end{tabular}    
   470 \end{center}    
   470 \end{center}    
   471 %\end{definition}
   471 %\end{definition}
   472 
   472 
   473 \noindent
   473 \noindent