equal
deleted
inserted
replaced
705 &&$\quad\textit{case} \; (\_, \ZERO) \Rightarrow \ZERO$ \\ |
705 &&$\quad\textit{case} \; (\_, \ZERO) \Rightarrow \ZERO$ \\ |
706 &&$\quad\textit{case} \; (\ONE, a_2') \Rightarrow \textit{fuse} \; bs \; a_2'$ \\ |
706 &&$\quad\textit{case} \; (\ONE, a_2') \Rightarrow \textit{fuse} \; bs \; a_2'$ \\ |
707 &&$\quad\textit{case} \; (a_1', \ONE) \Rightarrow \textit{fuse} \; bs \; a_1'$ \\ |
707 &&$\quad\textit{case} \; (a_1', \ONE) \Rightarrow \textit{fuse} \; bs \; a_1'$ \\ |
708 &&$\quad\textit{case} \; (a_1', a_2') \Rightarrow _{bs}a_1' \cdot a_2'$ \\ |
708 &&$\quad\textit{case} \; (a_1', a_2') \Rightarrow _{bs}a_1' \cdot a_2'$ \\ |
709 |
709 |
710 $\textit{simp} \; (_{bs}\sum \textit{as})$ & $\dn$ & $\textit{distinct}( \textit{flatten} ( \textit{map simp as})) \; \textit{match} $ \\ |
710 $\textit{simp} \; (_{bs}\sum \textit{as})$ & $\dn$ & $\textit{distinct}( \textit{flatten} ( \textit{as.map(simp)})) \; \textit{match} $ \\ |
711 &&$\quad\textit{case} \; [] \Rightarrow \ZERO$ \\ |
711 &&$\quad\textit{case} \; [] \Rightarrow \ZERO$ \\ |
712 &&$\quad\textit{case} \; a :: [] \Rightarrow \textit{fuse bs a}$ \\ |
712 &&$\quad\textit{case} \; a :: [] \Rightarrow \textit{fuse bs a}$ \\ |
713 &&$\quad\textit{case} \; as' \Rightarrow _{bs}\sum \textit{as'}$\\ |
713 &&$\quad\textit{case} \; as' \Rightarrow _{bs}\sum \textit{as'}$\\ |
714 |
714 |
715 $\textit{simp} \; a$ & $\dn$ & $\textit{a} \qquad \textit{otherwise}$ |
715 $\textit{simp} \; a$ & $\dn$ & $\textit{a} \qquad \textit{otherwise}$ |
1207 we will go throught the clause of $\backslash$: |
1207 we will go throught the clause of $\backslash$: |
1208 \begin{center} |
1208 \begin{center} |
1209 \begin{tabular}{lcl} |
1209 \begin{tabular}{lcl} |
1210 $(\textit{SEQ}\;bs\,a_1\,a_2)\,\backslash c$ & $\dn$ & |
1210 $(\textit{SEQ}\;bs\,a_1\,a_2)\,\backslash c$ & $\dn$ & |
1211 $(when \; \textit{bnullable}\,a_1)$\\ |
1211 $(when \; \textit{bnullable}\,a_1)$\\ |
1212 & &$\textit{ALTS}\,bs\,List(\;\;(\textit{SEQ}\,[]\,(a_1\,\backslash c)\,a_2),$\\ |
1212 & &$_{bs}\sum\,\;[_{[]}((a_1\,\backslash c) \cdot \,a_2),$\\ |
1213 & &$(\textit{fuse}\,(\textit{bmkeps}\,a_1)\,(a_2\,\backslash c))\;\;)$\\ |
1213 & &$(\textit{fuse}\,(\textit{bmkeps}\,a_1)\,(a_2\,\backslash c))]$\\ |
1214 \end{tabular} |
1214 \end{tabular} |
1215 \end{center} |
1215 \end{center} |
1216 |
1216 |
1217 because |
1217 because |
1218 $\rup\backslash a = (_0\ONE + \ZERO)(_0a + _1a^*)$ |
1218 $\rup\backslash a = (_0\ONE + \ZERO)(_0a + _1a^*)$ |