8
|
1 |
\documentclass{article}
|
|
2 |
\usepackage[utf8]{inputenc}
|
|
3 |
\usepackage[english]{babel}
|
|
4 |
\usepackage{listings}
|
|
5 |
\usepackage{amsthm}
|
|
6 |
\usepackage[margin=0.5in]{geometry}
|
|
7 |
|
|
8 |
\theoremstyle{theorem}
|
|
9 |
\newtheorem{theorem}{Theorem}
|
|
10 |
|
|
11 |
\theoremstyle{lemma}
|
|
12 |
\newtheorem{lemma}{Lemma}
|
|
13 |
|
|
14 |
\theoremstyle{definition}
|
|
15 |
\newtheorem{definition}{Definition}
|
|
16 |
\begin{document}
|
|
17 |
This is a sketch proof for the correctness of the algorithm ders\_simp.
|
|
18 |
\section{Function Definitions}
|
|
19 |
|
|
20 |
\begin{definition}{Bits}
|
|
21 |
\begin{verbatim}
|
|
22 |
abstract class Bit
|
|
23 |
case object Z extends Bit
|
|
24 |
case object S extends Bit
|
|
25 |
case class C(c: Char) extends Bit
|
|
26 |
|
|
27 |
type Bits = List[Bit]
|
|
28 |
\end{verbatim}
|
|
29 |
\end{definition}
|
|
30 |
|
|
31 |
\begin{definition}{Annotated Regular Expressions}
|
|
32 |
\begin{verbatim}
|
|
33 |
abstract class ARexp
|
|
34 |
case object AZERO extends ARexp
|
|
35 |
case class AONE(bs: Bits) extends ARexp
|
|
36 |
case class ACHAR(bs: Bits, f: Char) extends ARexp
|
|
37 |
case class AALTS(bs: Bits, rs: List[ARexp]) extends ARexp
|
|
38 |
case class ASEQ(bs: Bits, r1: ARexp, r2: ARexp) extends ARexp
|
|
39 |
case class ASTAR(bs: Bits, r: ARexp) extends ARexp
|
|
40 |
\end{verbatim}
|
|
41 |
\end{definition}
|
|
42 |
|
|
43 |
\begin{definition}{bnullable}
|
|
44 |
\begin{verbatim}
|
|
45 |
def bnullable (r: ARexp) : Boolean = r match {
|
|
46 |
case AZERO => false
|
|
47 |
case AONE(_) => true
|
|
48 |
case ACHAR(_,_) => false
|
|
49 |
case AALTS(_, rs) => rs.exists(bnullable)
|
|
50 |
case ASEQ(_, r1, r2) => bnullable(r1) && bnullable(r2)
|
|
51 |
case ASTAR(_, _) => true
|
|
52 |
}
|
|
53 |
\end{verbatim}
|
|
54 |
\end{definition}
|
|
55 |
|
|
56 |
\begin{definition}{ders\_simp}
|
|
57 |
\begin{verbatim}
|
|
58 |
def ders_simp(r: ARexp, s: List[Char]): ARexp = {
|
|
59 |
s match {
|
|
60 |
case Nil => r
|
|
61 |
case c::cs => ders_simp(bsimp(bder(c, r)), cs)
|
|
62 |
}
|
|
63 |
}\end{verbatim}
|
|
64 |
\end{definition}
|
|
65 |
|
|
66 |
\begin{definition}{bder}
|
|
67 |
\begin{verbatim}
|
|
68 |
def bder(c: Char, r: ARexp) : ARexp = r match {
|
|
69 |
case AZERO => AZERO
|
|
70 |
case AONE(_) => AZERO
|
|
71 |
case ACHAR(bs, f) => if (c == f) AONE(bs:::List(C(c))) else AZERO
|
|
72 |
case AALTS(bs, rs) => AALTS(bs, rs.map(bder(c, _)))
|
|
73 |
case ASEQ(bs, r1, r2) => {
|
|
74 |
if (bnullable(r1)) AALT(bs, ASEQ(Nil, bder(c, r1), r2), fuse(mkepsBC(r1), bder(c, r2)))
|
|
75 |
else ASEQ(bs, bder(c, r1), r2)
|
|
76 |
}
|
|
77 |
case ASTAR(bs, r) => ASEQ(bs, fuse(List(S), bder(c, r)), ASTAR(Nil, r))
|
|
78 |
}
|
|
79 |
\end{verbatim}
|
|
80 |
\end{definition}
|
|
81 |
|
|
82 |
\begin{definition}{bsimp}
|
|
83 |
\begin{verbatim}
|
|
84 |
def bsimp(r: ARexp): ARexp = r match {
|
|
85 |
case ASEQ(bs1, r1, r2) => (bsimp(r1), bsimp(r2)) match {
|
|
86 |
case (AZERO, _) => AZERO
|
|
87 |
case (_, AZERO) => AZERO
|
|
88 |
case (AONE(bs2), r2s) => fuse(bs1 ++ bs2, r2s)
|
|
89 |
case (r1s, r2s) => ASEQ(bs1, r1s, r2s)
|
|
90 |
}
|
|
91 |
case AALTS(bs1, rs) => {
|
|
92 |
val rs_simp = rs.map(bsimp)
|
|
93 |
val flat_res = flats(rs_simp)
|
|
94 |
val dist_res = distinctBy(flat_res, erase)
|
|
95 |
dist_res match {
|
|
96 |
case Nil => AZERO
|
|
97 |
case s :: Nil => fuse(bs1, s)
|
|
98 |
case rs => AALTS(bs1, rs)
|
|
99 |
}
|
|
100 |
}
|
|
101 |
//case ASTAR(bs, r) => ASTAR(bs, bsimp(r))
|
|
102 |
case r => r
|
|
103 |
}
|
|
104 |
\end{verbatim}
|
|
105 |
\end{definition}
|
|
106 |
|
|
107 |
\begin{definition}{sub-parts of bsimp}
|
|
108 |
\begin{itemize}
|
|
109 |
\item{flats}\\
|
|
110 |
flattens the list.
|
|
111 |
\item{dB}\\
|
|
112 |
means distinctBy
|
|
113 |
\item{Co}\\
|
|
114 |
The last matching clause of the function bsimp, namely
|
|
115 |
dist\_res match {
|
|
116 |
case Nil => AZERO
|
|
117 |
case s :: Nil => fuse(bs1, s)
|
|
118 |
case rs => AALTS(bs1, rs)
|
|
119 |
}
|
|
120 |
\end{itemize}
|
|
121 |
\end{definition}
|
|
122 |
|
|
123 |
\begin{definition}{fuse}
|
|
124 |
\begin{verbatim}
|
|
125 |
def fuse(bs: Bits, r: ARexp) : ARexp = r match {
|
|
126 |
case AZERO => AZERO
|
|
127 |
case AONE(cs) => AONE(bs ++ cs)
|
|
128 |
case ACHAR(cs, f) => ACHAR(bs ++ cs, f)
|
|
129 |
case AALTS(cs, rs) => AALTS(bs ++ cs, rs)
|
|
130 |
case ASEQ(cs, r1, r2) => ASEQ(bs ++ cs, r1, r2)
|
|
131 |
case ASTAR(cs, r) => ASTAR(bs ++ cs, r)
|
|
132 |
}
|
|
133 |
\end{verbatim}
|
|
134 |
\end{definition}
|
|
135 |
|
|
136 |
|
|
137 |
\begin{definition}{mkepsBC}
|
|
138 |
\begin{verbatim}
|
|
139 |
def mkepsBC(r: ARexp) : Bits = r match {
|
|
140 |
case AONE(bs) => bs
|
|
141 |
case AALTS(bs, rs) => {
|
|
142 |
val n = rs.indexWhere(bnullable)
|
|
143 |
bs ++ mkepsBC(rs(n))
|
|
144 |
}
|
|
145 |
case ASEQ(bs, r1, r2) => bs ++ mkepsBC(r1) ++ mkepsBC(r2)
|
|
146 |
case ASTAR(bs, r) => bs ++ List(Z)
|
|
147 |
}
|
|
148 |
\end{verbatim}
|
|
149 |
\end{definition}
|
|
150 |
|
|
151 |
\begin{definition}{mkepsBC equicalence}
|
|
152 |
\\
|
|
153 |
Given 2 nullable annotated regular expressions r1, r2, if mkepsBC(r1) == mkepsBC(r2)
|
|
154 |
then r1 and r2 are mkepsBC equivalent, denoted as r1 $\sim_{m\epsilon}$ r2
|
|
155 |
\end{definition}
|
|
156 |
|
|
157 |
\begin{definition}{shorthand notation for ders}
|
|
158 |
\\For the sake of reducing verbosity, we sometimes use the shorthand notation
|
|
159 |
$d_{c}(r)$ for the function application bder(c, r) and $s(r)$(s here stands for simplification) for the function application bsimp(r) .
|
|
160 |
\\We omit the subscript when it is clear from context what that character is and write $d(r)$ instead of $d_{c}(r)$.
|
|
161 |
\\And we omit the parentheses when no confusion can be caused. For example ders\_simp(c, r) can be written as $s(d_{c}(r))$ or even $s d r$ as we know the derivative operation is w.r.t the character c. Here the s and d are more like operators that take an annotated regular expression as an input and return an annotated regular expression as an output
|
|
162 |
|
|
163 |
\end{definition}
|
|
164 |
|
|
165 |
\begin{definition}{mkepsBC invariant manipulation of bits and notation}\\
|
|
166 |
ALTS(bs, ALTS(bs1, rs1), ALTS(bs2, rs2)) $\sim_{m\epsilon}$ ALTS(bs, rs1.map(fuse(bs1, \_)) ++ rs2.map(fuse(bs2, \_)) ). \\
|
|
167 |
We also use $bs2>>rs2 $ as a shorthand notation for rs2.map(fuse(bs2,\_)).
|
|
168 |
|
|
169 |
\end{definition}
|
|
170 |
|
|
171 |
\begin{definition}{distinctBy operation expressed in a different way--how it transforms the list}\\
|
|
172 |
Given two lists rs1 and rs2, we define the operation $--$:\\
|
|
173 |
$rs1 -- rs2 := [r \in rs1 | r \notin rs2]$
|
|
174 |
Note that the order is preserved as in the original list.
|
|
175 |
\end{definition}
|
|
176 |
|
|
177 |
|
|
178 |
\section{Main Result}
|
|
179 |
\begin{lemma}{simplification function does not simplify an already simplified regex}\\
|
|
180 |
bsimp(r) == bsimp(bsimp(r)) holds for any annotated regular expression r.
|
|
181 |
\end{lemma}
|
|
182 |
|
|
183 |
\begin{lemma}{simp and mkeps}\\
|
|
184 |
When r is nullable, we have that
|
|
185 |
mkeps(bsimp(r)) == mkeps(r)
|
|
186 |
\end{lemma}
|
|
187 |
|
|
188 |
\begin{lemma}{mkeps equivalence w.r.t some syntactically different regular expressions(1 ALTS)}\\
|
|
189 |
When one of the 2 regular expressions $s(r_1)$ and $s(r_2)$ is ALTS(bs1, rs1), we have that $ds(ALTS(bs, r1, r2)) \sim_{m\epsilon} d(ALTS(bs, sr_1, sr_2))$
|
|
190 |
\end{lemma}
|
|
191 |
\begin{proof}
|
|
192 |
By opening up one of the alts and show no additional changes are made.
|
|
193 |
\end{proof}
|
|
194 |
|
|
195 |
\begin{lemma}{mkepsBC equivalence w.r.t syntactically different regular expressions(2 ALTS)}\\
|
|
196 |
$sr_1 = ALTS(bs1, rs1)$ and $sr_2 = ALTS(bs2, rs2)$ we have $ d(sr_1 +sr_2 ) \sim_{m\epsilon} d(ALTS(bs, bs1>>rs1 ++ bs2>>rs2))$
|
|
197 |
\end{lemma}
|
|
198 |
\begin{proof}
|
|
199 |
We are just fusing bits inside here, there is no other structural change.
|
|
200 |
\end{proof}
|
|
201 |
|
|
202 |
\begin{lemma}{mkepsBC equivalence w.r.t syntactically different regular expressions(2 ALTS+ some deletion)}\\
|
|
203 |
$d Co(ALTS(bs, dB(bs1>>rs1 ++ bs2>>rs2))) \sim_{m\epsilon} d Co(ALTS(bs, dB(bs1>>rs1 ++ ((bs2>>rs2)--rs1) ))) $
|
|
204 |
\end{lemma}
|
|
205 |
\begin{proof}
|
|
206 |
The removed parts have already appeared before in $rs_1$, so if any of them is truly nullable and is chosen as the mkeps path, it will have been traversed through in its previous counterpart.\\
|
|
207 |
(We probably need to switch the position of lemma5 and lemma6)
|
|
208 |
\end{proof}
|
|
209 |
|
|
210 |
\begin{lemma}{after opening two previously simplified alts up into terms, length must exceed 2}\\
|
|
211 |
$d Co(ALTS(bs, rs )) \sim_{m\epsilon} d(ALTS(bs, rs))$ if $rs$ is a list of length greater than or equal to 2.
|
|
212 |
\end{lemma}
|
|
213 |
\begin{proof}
|
|
214 |
As suggested by the title of this lemma
|
|
215 |
\end{proof}
|
|
216 |
|
|
217 |
|
|
218 |
|
|
219 |
|
|
220 |
|
|
221 |
|
|
222 |
\begin{theorem}{Correctness Result}
|
|
223 |
|
|
224 |
\begin{itemize}
|
|
225 |
|
|
226 |
\item{}
|
|
227 |
When s is a string in the language L(ar), \\
|
|
228 |
ders\_simp(ar, s) $\sim_{m\epsilon}$ ders(ar, s), \\
|
|
229 |
\item{}
|
|
230 |
when s is not a string of the language L(ar)
|
|
231 |
ders\_simp(ar, s) is not nullable
|
|
232 |
\end{itemize}
|
|
233 |
\end{theorem}
|
|
234 |
|
|
235 |
\begin{proof}{Split into 2 parts.}
|
|
236 |
\begin{itemize}
|
|
237 |
\item
|
|
238 |
|
|
239 |
When we have an annotated regular expression ar and a string s that matches ar, by the correctness of the algorithm ders, we have that ders(ar, s) is nullable, and that mkepsBC will extract the desired bits for decoding the correct value v for the matching, and v is a POSIX value. Now we prove that mkepsBC(ders\_simp(ar, s)) yields the same bitsequence.
|
|
240 |
\\
|
|
241 |
We first open up the ders\_simp function into nested alternating sequences of ders and simp.
|
|
242 |
Assume that s = $c_1...c_n$($n \geq 1$ ) where each of the $c_i$ are characters.
|
|
243 |
Then $ders\_simp(ar, s)$ = $s(d_{c_n}(...s(d_{c_1}(r))...))$ = $sdsd......sdr$. If we can prove that
|
|
244 |
$sdr \sim_{m\epsilon} dsr$ holds for any regular expression and any character, then we are done. This is because then we can push ders operation inside and move simp operation outside and have that $sdsd...sdr \sim_{m\epsilon} ssddsdsd...sdr \sim_{m\epsilon} ... \sim_{m\epsilon} s....sd....dr$ and using lemma1 we have that $s...sd....dr = sd...dr$. By lemma2, we have $RHS \sim_{m\epsilon} d...dr$.\\
|
|
245 |
Now we proceed to prove that $sdr \sim_{m\epsilon} dsr$. This can be reduced to proving $dr \sim_{m\epsilon} dsr$ as we know that $dr \sim_{m\epsilon} sdr$ by lemma2.\\
|
|
246 |
|
|
247 |
we use an induction proof. Base cases are omitted. Here are the 3 inductive cases.
|
|
248 |
\begin{itemize}
|
|
249 |
|
|
250 |
\item{$r_1+r_2$}
|
|
251 |
$r_1+r_2$\\
|
|
252 |
The most difficult case is when $sr1$ and $sr2$ are both ALTS, so that they will be opened up in the flats function and some terms in sr2 might be deleted. Or otherwise we can use the argument that $d(r_1+r_2) = dr_1 + dr_2 \sim_{m\epsilon} dsr_1 + dsr_2 \sim_{m\epsilon} ds(r_1+r_2)$,
|
|
253 |
the last equivalence being established by lemma3.
|
|
254 |
When $s(r_1), s(r_2)$ are both ALTS, we have to be more careful for the last equivalence step, namelly, $dsr_1 + dsr_2 \sim_{m\epsilon} ds(r_1+r_2)$. \\
|
|
255 |
We have that $LHS = dsr_1 + dsr_2 = d(sr_1 +sr_2)$. Since $sr_1 = ALTS(bs1, rs1)$ and $sr_2 = ALTS(bs2, rs2)$ we have $ d(sr_1 +sr_2 ) \sim_{m\epsilon} d(ALTS(bs, bs1>>rs1 ++ bs2>>rs2))$ by lemma4.
|
|
256 |
On the other hand, $RHS = ds(ALTS(bs, r1, r2)) \sim_{m\epsilon}d Co(ALTS(bs, dB(flats(s(r1), s(r2))))) == d Co(ALTS(bs, dB(bs1>>rs1 ++ bs2>>rs2)))$ by definition of bsimp and flats.\\ $d Co(ALTS(bs, dB(bs1>>rs1 ++ bs2>>rs2))) \sim_{m\epsilon} d Co(ALTS(bs, (bs1>>rs1 ++ ((bs2>>rs2)--rs1) ))) $ by lemma5.\\ $d Co(ALTS(bs, (bs1>>rs1 ++ ((bs2>>rs2)--rs1) ))) \sim_{m\epsilon} d(ALTS(bs, bs1>>rs1 ++ (bs2>>rs2)--rs1))$ by lemma6. \\
|
|
257 |
Using lemma5 again, we have $d(ALTS(bs, bs1>>rs1 ++ (bs2>>rs2)--rs1)) \sim_{m\epsilon} d(ALTS(bs, bs1>>rs1 ++ bs2>>rs2))$.\\
|
|
258 |
This completes the proof.
|
|
259 |
\item{$r*$}\\
|
|
260 |
s(r*) = s(r).
|
|
261 |
\item{$r1.r2$}\\
|
|
262 |
using previous.
|
|
263 |
|
|
264 |
\end{itemize}
|
|
265 |
\item
|
|
266 |
Proof of second part of the theorem: use a similar structure of argument as in the first part.
|
|
267 |
\end{itemize}
|
|
268 |
\end{proof}
|
|
269 |
|
|
270 |
\end{document}
|
|
271 |
|
|
272 |
%The second part might still need some more development.
|
|
273 |
%When s is not in the set L(ar), we have that s = s1@s2 s.t. s1 $\in$ L(ar), and any longer string that is a prefix of s does not belong to L(ar).\\
|
|
274 |
%By first part of proof, we have ders(ar, s1) $\sim_{m\epsilon}$ ders\_simp(ar, s1)
|
|
275 |
%.....somehow show that by correctness, der(c, ders\_simp(ar, s1)) must be not nullable. But this will need that L(ders(ar, s1)) == L(ders\_simp(ar, s1)). By part 1 of proof we only have that for any string s1c s.t. s1c $\in$ L(ar) (which is equivalent to s $\in$ L(ders(ar, s1))), s is also in L(ders\_simp(ar, s1)). That is an inclusion, not an equality. c not in L(ders(ar, s1)) does not imply c not in L(ders\_simp(ar, s1))
|
|
276 |
%So this path stuck here.
|