--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/progs/Matcher.thy Mon Oct 28 13:19:44 2013 +0000
@@ -0,0 +1,206 @@
+theory Matcher
+ imports "Main"
+begin
+
+section {* Regular Expressions *}
+
+datatype rexp =
+ NULL
+| EMPTY
+| CHAR char
+| SEQ rexp rexp
+| ALT rexp rexp
+| STAR rexp
+
+
+section {* Sequential Composition of Sets *}
+
+definition
+ Seq :: "string set \<Rightarrow> string set \<Rightarrow> string set" ("_ ;; _" [100,100] 100)
+where
+ "A ;; B = {s1 @ s2 | s1 s2. s1 \<in> A \<and> s2 \<in> B}"
+
+text {* Two Simple Properties about Sequential Composition *}
+
+lemma seq_empty [simp]:
+ shows "A ;; {[]} = A"
+ and "{[]} ;; A = A"
+by (simp_all add: Seq_def)
+
+lemma seq_null [simp]:
+ shows "A ;; {} = {}"
+ and "{} ;; A = {}"
+by (simp_all add: Seq_def)
+
+section {* Kleene Star for Sets *}
+
+inductive_set
+ Star :: "string set \<Rightarrow> string set" ("_\<star>" [101] 102)
+ for A :: "string set"
+where
+ start[intro]: "[] \<in> A\<star>"
+| step[intro]: "\<lbrakk>s1 \<in> A; s2 \<in> A\<star>\<rbrakk> \<Longrightarrow> s1 @ s2 \<in> A\<star>"
+
+
+text {* A Standard Property of Star *}
+
+lemma star_cases:
+ shows "A\<star> = {[]} \<union> A ;; A\<star>"
+unfolding Seq_def
+by (auto) (metis Star.simps)
+
+lemma star_decomp:
+ assumes a: "c # x \<in> A\<star>"
+ shows "\<exists>a b. x = a @ b \<and> c # a \<in> A \<and> b \<in> A\<star>"
+using a
+by (induct x\<equiv>"c # x" rule: Star.induct)
+ (auto simp add: append_eq_Cons_conv)
+
+
+section {* Semantics of Regular Expressions *}
+
+fun
+ L :: "rexp \<Rightarrow> string set"
+where
+ "L (NULL) = {}"
+| "L (EMPTY) = {[]}"
+| "L (CHAR c) = {[c]}"
+| "L (SEQ r1 r2) = (L r1) ;; (L r2)"
+| "L (ALT r1 r2) = (L r1) \<union> (L r2)"
+| "L (STAR r) = (L r)\<star>"
+
+section {* The Matcher *}
+
+fun
+ nullable :: "rexp \<Rightarrow> bool"
+where
+ "nullable (NULL) = False"
+| "nullable (EMPTY) = True"
+| "nullable (CHAR c) = False"
+| "nullable (ALT r1 r2) = (nullable r1 \<or> nullable r2)"
+| "nullable (SEQ r1 r2) = (nullable r1 \<and> nullable r2)"
+| "nullable (STAR r) = True"
+
+fun
+ der :: "char \<Rightarrow> rexp \<Rightarrow> rexp"
+where
+ "der c (NULL) = NULL"
+| "der c (EMPTY) = NULL"
+| "der c (CHAR c') = (if c = c' then EMPTY else NULL)"
+| "der c (ALT r1 r2) = ALT (der c r1) (der c r2)"
+| "der c (SEQ r1 r2) = ALT (SEQ (der c r1) r2) (if nullable r1 then der c r2 else NULL)"
+| "der c (STAR r) = SEQ (der c r) (STAR r)"
+
+fun
+ ders :: "string \<Rightarrow> rexp \<Rightarrow> rexp"
+where
+ "ders [] r = r"
+| "ders (c # s) r = ders s (der c r)"
+
+fun
+ matcher :: "rexp \<Rightarrow> string \<Rightarrow> bool"
+where
+ "matcher r s = nullable (ders s r)"
+
+
+section {* Correctness Proof of the Matcher *}
+
+lemma nullable_correctness:
+ shows "nullable r \<longleftrightarrow> [] \<in> (L r)"
+by (induct r) (auto simp add: Seq_def)
+section {* Left-Quotient of a Set *}
+
+definition
+ Der :: "char \<Rightarrow> string set \<Rightarrow> string set"
+where
+ "Der c A \<equiv> {s. [c] @ s \<in> A}"
+
+lemma Der_null [simp]:
+ shows "Der c {} = {}"
+unfolding Der_def
+by auto
+
+lemma Der_empty [simp]:
+ shows "Der c {[]} = {}"
+unfolding Der_def
+by auto
+
+lemma Der_char [simp]:
+ shows "Der c {[d]} = (if c = d then {[]} else {})"
+unfolding Der_def
+by auto
+
+lemma Der_union [simp]:
+ shows "Der c (A \<union> B) = Der c A \<union> Der c B"
+unfolding Der_def
+by auto
+
+lemma Der_seq [simp]:
+ shows "Der c (A ;; B) = (Der c A) ;; B \<union> (if [] \<in> A then Der c B else {})"
+unfolding Der_def Seq_def
+by (auto simp add: Cons_eq_append_conv)
+
+lemma Der_star [simp]:
+ shows "Der c (A\<star>) = (Der c A) ;; A\<star>"
+proof -
+ have "Der c (A\<star>) = Der c ({[]} \<union> A ;; A\<star>)"
+ by (simp only: star_cases[symmetric])
+ also have "... = Der c (A ;; A\<star>)"
+ by (simp only: Der_union Der_empty) (simp)
+ also have "... = (Der c A) ;; A\<star> \<union> (if [] \<in> A then Der c (A\<star>) else {})"
+ by simp
+ also have "... = (Der c A) ;; A\<star>"
+ unfolding Seq_def Der_def
+ by (auto dest: star_decomp)
+ finally show "Der c (A\<star>) = (Der c A) ;; A\<star>" .
+qed
+
+
+lemma der_correctness:
+ shows "L (der c r) = Der c (L r)"
+by (induct r)
+ (simp_all add: nullable_correctness)
+
+lemma matcher_correctness:
+ shows "matcher r s \<longleftrightarrow> s \<in> L r"
+by (induct s arbitrary: r)
+ (simp_all add: nullable_correctness der_correctness Der_def)
+
+section {* Examples *}
+
+definition
+ "CHRA \<equiv> CHAR (CHR ''a'')"
+
+definition
+ "ALT1 \<equiv> ALT CHRA EMPTY"
+
+definition
+ "SEQ3 \<equiv> SEQ (SEQ ALT1 ALT1) ALT1"
+
+value "matcher SEQ3 ''aaa''"
+
+value "matcher NULL []"
+value "matcher (CHAR (CHR ''a'')) [CHR ''a'']"
+value "matcher (CHAR a) [a,a]"
+value "matcher (STAR (CHAR a)) []"
+value "matcher (STAR (CHAR a)) [a,a]"
+value "matcher (SEQ (CHAR (CHR ''a'')) (SEQ (STAR (CHAR (CHR ''b''))) (CHAR (CHR ''c'')))) ''abbbbc''"
+value "matcher (SEQ (CHAR (CHR ''a'')) (SEQ (STAR (CHAR (CHR ''b''))) (CHAR (CHR ''c'')))) ''abbcbbc''"
+
+section {* Incorrect Matcher - fun-definition rejected *}
+
+fun
+ match :: "rexp list \<Rightarrow> string \<Rightarrow> bool"
+where
+ "match [] [] = True"
+| "match [] (c # s) = False"
+| "match (NULL # rs) s = False"
+| "match (EMPTY # rs) s = match rs s"
+| "match (CHAR c # rs) [] = False"
+| "match (CHAR c # rs) (d # s) = (if c = d then match rs s else False)"
+| "match (ALT r1 r2 # rs) s = (match (r1 # rs) s \<or> match (r2 # rs) s)"
+| "match (SEQ r1 r2 # rs) s = match (r1 # r2 # rs) s"
+| "match (STAR r # rs) s = (match rs s \<or> match (r # (STAR r) # rs) s)"
+
+
+end
\ No newline at end of file