updated
authorChristian Urban <christian dot urban at kcl dot ac dot uk>
Mon, 07 Oct 2013 08:52:03 +0100
changeset 128 44863a6b468a
parent 127 41ef073ac6c4
child 129 722d88a38b04
updated
coursework/cw01.pdf
coursework/cw01.tex
Binary file coursework/cw01.pdf has changed
--- a/coursework/cw01.tex	Mon Oct 07 04:04:06 2013 +0100
+++ b/coursework/cw01.tex	Mon Oct 07 08:52:03 2013 +0100
@@ -67,6 +67,7 @@
 \item $nullable(r)$ if and only if $""\in L(r)$
 \item $L(der\,c\,r)) = Der\,c\,(L(r))$
 \end{itemize}
+\newpage
 
 \subsection*{Question 1 (unmarked)}
 
@@ -114,8 +115,10 @@
 \subsection*{Question 4 (marked with 1\%)}
 
 Let $r_1$ be the regular expression $a\cdot a\cdot a$ and $r_2$ be $(a^{\{19,19\}}) \cdot (a^?)$.
-Decide whether the following three strings can be matched by $(r_1^+)^+$. Similarly test them with $(r_2^+)^+$. 
-Again answer in all six cases with yes or no.
+Decide whether the following three strings consisting of $a$s only can be matched by $(r_1^+)^+$. 
+Similarly test them with $(r_2^+)^+$. Again answer in all six cases with yes or no. Be careful when 
+copy-and-pasting the strings so as to not forgetting any $a$ and to not introducing any
+other character.
 
 \begin{enumerate}
 \item $"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa\\