updated
authorChristian Urban <christian dot urban at kcl dot ac dot uk>
Fri, 07 Oct 2016 22:08:03 +0100 (2016-10-07)
changeset 444 3056a4c071b0
parent 443 cd43d8c6eb84
child 445 e7d0157f0471
updated
handouts/ho03.pdf
handouts/ho03.tex
handouts/ho04.pdf
handouts/ho04.tex
hws/hw01.pdf
hws/hw01.tex
hws/hw02.pdf
hws/hw02.tex
hws/hw03.pdf
hws/hw03.tex
hws/hw04.pdf
hws/hw04.tex
hws/hw05.pdf
hws/hw05.tex
Binary file handouts/ho03.pdf has changed
--- a/handouts/ho03.tex	Tue Oct 04 15:09:08 2016 +0100
+++ b/handouts/ho03.tex	Fri Oct 07 22:08:03 2016 +0100
@@ -184,16 +184,16 @@
 
 The reason for introducing NFAs is that there is a relatively
 simple (recursive) translation of regular expressions into
-NFAs. Consider the simple regular expressions $\varnothing$,
-$\epsilon$ and $c$. They can be translated as follows:
+NFAs. Consider the simple regular expressions $\ZERO$,
+$\ONE$ and $c$. They can be translated as follows:
 
 \begin{center}
 \begin{tabular}[t]{l@{\hspace{10mm}}l}
-\raisebox{1mm}{$\varnothing$} & 
+\raisebox{1mm}{$\ZERO$} & 
 \begin{tikzpicture}[scale=0.7,>=stealth',very thick, every state/.style={minimum size=3pt,draw=blue!50,very thick,fill=blue!20},]
 \node[state, initial]  (q_0)  {$\mbox{}$};
 \end{tikzpicture}\\\\
-\raisebox{1mm}{$\epsilon$} & 
+\raisebox{1mm}{$\ONE$} & 
 \begin{tikzpicture}[scale=0.7,>=stealth',very thick, every state/.style={minimum size=3pt,draw=blue!50,very thick,fill=blue!20},]
 \node[state, initial, accepting]  (q_0)  {$\mbox{}$};
 \end{tikzpicture}\\\\
@@ -548,7 +548,7 @@
 system
 
 \begin{eqnarray}
-q_0 & = & \epsilon + q_0\,b + q_1\,b +  q_2\,b\\
+q_0 & = & \ONE + q_0\,b + q_1\,b +  q_2\,b\\
 q_1 & = & q_0\,a\\
 q_2 & = & q_1\,a + q_2\,a
 \end{eqnarray}
@@ -569,7 +569,7 @@
 will make you stay in $q_2$. The right-hand side of the
 first equation is constructed similarly: there are three 
 incoming edges, therefore there are three terms. There is
-one exception in that we also ``add'' $\epsilon$ to the
+one exception in that we also ``add'' $\ONE$ to the
 first equation, because it corresponds to the starting state
 in the DFA.
 
@@ -582,7 +582,7 @@
 into the other two. This gives
 
 \begin{eqnarray}
-q_0 & = & \epsilon + q_0\,b + q_0\,a\,b +  q_2\,b\\
+q_0 & = & \ONE + q_0\,b + q_0\,a\,b +  q_2\,b\\
 q_2 & = & q_0\,a\,a + q_2\,a
 \end{eqnarray}
 
@@ -591,7 +591,7 @@
 Equation (4) to obtain the following two equations:
 
 \begin{eqnarray}
-q_0 & = & \epsilon + q_0\,(b + a\,b) +  q_2\,b\\
+q_0 & = & \ONE + q_0\,(b + a\,b) +  q_2\,b\\
 q_2 & = & q_0\,a\,a + q_2\,a
 \end{eqnarray}
  
@@ -607,7 +607,7 @@
 (7) to obtain the two new equations
 
 \begin{eqnarray}
-q_0 & = & \epsilon + q_0\,(b + a\,b) +  q_2\,b\\
+q_0 & = & \ONE + q_0\,(b + a\,b) +  q_2\,b\\
 q_2 & = & q_0\,a\,a\,(a^*)
 \end{eqnarray}
 
@@ -615,26 +615,26 @@
 the first in order to eliminate the variable $q_2$.
 
 \begin{eqnarray}
-q_0 & = & \epsilon + q_0\,(b + a\,b) +  q_0\,a\,a\,(a^*)\,b
+q_0 & = & \ONE + q_0\,(b + a\,b) +  q_0\,a\,a\,(a^*)\,b
 \end{eqnarray}
 
 \noindent Pulling $q_0$ out as a single factor gives:
 
 \begin{eqnarray}
-q_0 & = & \epsilon + q_0\,(b + a\,b + a\,a\,(a^*)\,b)
+q_0 & = & \ONE + q_0\,(b + a\,b + a\,a\,(a^*)\,b)
 \end{eqnarray}
 
 \noindent This equation is again of the form so that we can
 apply Arden's rule ($r$ is $b + a\,b + a\,a\,(a^*)\,b$ and $s$
-is $\epsilon$). This gives as solution for $q_0$ the following
+is $\ONE$). This gives as solution for $q_0$ the following
 regular expression:
 
 \begin{eqnarray}
-q_0 & = & \epsilon\,(b + a\,b + a\,a\,(a^*)\,b)^*
+q_0 & = & \ONE\,(b + a\,b + a\,a\,(a^*)\,b)^*
 \end{eqnarray}
 
 \noindent Since this is a regular expression, we can simplify
-away the $\epsilon$ to obtain the slightly simpler regular
+away the $\ONE$ to obtain the slightly simpler regular
 expression
 
 \begin{eqnarray}
Binary file handouts/ho04.pdf has changed
--- a/handouts/ho04.tex	Tue Oct 04 15:09:08 2016 +0100
+++ b/handouts/ho04.tex	Fri Oct 07 22:08:03 2016 +0100
@@ -537,7 +537,7 @@
 
 \noindent This completes the high-level version of the simplification
 function, which is shown again in Figure~\ref{simp}. The Scala code
-for the simplifaction function is in Figure~\ref{simprect}.
+for the simplification function is in Figure~\ref{simprect}.
 
 \begin{figure}[t]
 \begin{center}
Binary file hws/hw01.pdf has changed
--- a/hws/hw01.tex	Tue Oct 04 15:09:08 2016 +0100
+++ b/hws/hw01.tex	Fri Oct 07 22:08:03 2016 +0100
@@ -54,10 +54,10 @@
       the strings in $A$ is the empty string, for example $A =
       \{[a], [b], [c], []\}$.
 
-\item How many basic regular expressions are there to match
-      the string $abcd$? (ii) How many if they cannot include
-      $\ONE$ and $\ZERO$? (iii) How many if they are also not
-      allowed to contain stars? (iv) How many if they are also
+\item (1)How many basic regular expressions are there to match
+      the string $abcd$? (2) How many if they cannot include
+      $\ONE$ and $\ZERO$? (3) How many if they are also not
+      allowed to contain stars? (4) How many if they are also
       not allowed to contain $\_ + \_$?
 
 \item When are two regular expressions equivalent? Can you
@@ -68,7 +68,7 @@
       $[b]$.
 
 \item What is meant by the notions \emph{evil regular expressions}
-      and \emph{catastrophic backtracking}? 
+      and by \emph{catastrophic backtracking}? 
 
 \item \POSTSCRIPT  
 \end{enumerate}
Binary file hws/hw02.pdf has changed
--- a/hws/hw02.tex	Tue Oct 04 15:09:08 2016 +0100
+++ b/hws/hw02.tex	Fri Oct 07 22:08:03 2016 +0100
@@ -104,7 +104,8 @@
       
 \item Give a regular expression that can recognise an odd 
 number of $a$s or an even number of $b$s.     
-      
+
+\item \POSTSCRIPT  
 \end{enumerate}
 
 \end{document}
Binary file hws/hw03.pdf has changed
--- a/hws/hw03.tex	Tue Oct 04 15:09:08 2016 +0100
+++ b/hws/hw03.tex	Fri Oct 07 22:08:03 2016 +0100
@@ -172,6 +172,7 @@
 automaton (DFA) that can recognise the same language
 as the NFA maximal need?
 
+\item \POSTSCRIPT  
 \end{enumerate}
 
 \end{document}
Binary file hws/hw04.pdf has changed
--- a/hws/hw04.tex	Tue Oct 04 15:09:08 2016 +0100
+++ b/hws/hw04.tex	Fri Oct 07 22:08:03 2016 +0100
@@ -10,7 +10,7 @@
 
 \begin{enumerate}
 
-\item If a regular expression $r$ does not contain any occurrence of $\varnothing$,  
+\item If a regular expression $r$ does not contain any occurrence of $\ZERO$,  
 is it possible for $L(r)$ to be empty?
 
 \item Define the tokens and regular expressions for a language
@@ -106,7 +106,9 @@
 %\item (Optional) Modify the tokenizer in \texttt{regexp2.scala} so that it
 %implements the \texttt{findAll} function. This function takes a regular
 %expressions and a string, and returns all substrings in this string that 
-%match the regular expression.
+      %match the regular expression.
+
+\item \POSTSCRIPT  
 \end{enumerate}
 
 
Binary file hws/hw05.pdf has changed
--- a/hws/hw05.tex	Tue Oct 04 15:09:08 2016 +0100
+++ b/hws/hw05.tex	Fri Oct 07 22:08:03 2016 +0100
@@ -88,7 +88,7 @@
 Observe the maximal munch rule and the priorities of your regular
 expressions that make the process of lexing unambiguous.)
 
-\item (Optional) Recall the definitions for $Der$ and $der$
+\item {\bf(Optional)} Recall the definitions for $Der$ and $der$
       from the lectures. Prove by induction on $r$ the
       property that 
 
@@ -98,6 +98,7 @@
 
       holds.
 
+\item \POSTSCRIPT        
 \end{enumerate}
 
 \end{document}