--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/S_grammar-token.scala Mon Nov 19 14:18:42 2012 +0000
@@ -0,0 +1,47 @@
+//:load matcher.scala
+//:load parser3.scala
+
+abstract class Token
+case object T_ONE extends Token
+
+val lexing_rules : List[Rule[Token]] =
+ List(("1", (s: List[Char]) => T_ONE))
+
+val T = Tokenizer(lexing_rules)
+
+case class TokParser(tok: Token) extends Parser[List[Token], Token] {
+ def parse(ts: List[Token]) = ts match {
+ case t::ts if (t == tok) => Set((t, ts))
+ case _ => Set ()
+ }
+}
+implicit def token2tokparser(t: Token) = TokParser(t)
+
+case object EmpParser extends Parser[List[Token], String] {
+ def parse(ts: List[Token]) = Set(("", ts))
+}
+
+
+lazy val Su: Parser[List[Token], String] =
+ (T_ONE ~ Su) ==> { case (x, y) => "1" + y} || EmpParser
+
+
+def time_needed[T](i: Int, code: => T) = {
+ val start = System.nanoTime()
+ for (j <- 1 to i) code
+ val end = System.nanoTime()
+ (end - start)/(i * 1.0e9)
+}
+
+def test(i: Int) = {
+ val result = Su.parse_all(T.fromString("1" * i))
+ //print(result.size + " ")
+}
+
+
+for (i <- 1 to 1000 by 50) {
+ print(i + " ")
+ print("%.5f".format(time_needed(1, test(i))))
+ print("\n")
+}
+
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/S_grammar.scala Mon Nov 19 14:18:42 2012 +0000
@@ -0,0 +1,52 @@
+//:load parser3.scala
+
+case class StringParser(s: String) extends Parser[String, String] {
+ def parse(ts: String) = {
+ if (s.length <= ts.length && ts.startsWith(s)) Set((s, ts.drop(s.length)))
+ else Set()
+ }
+}
+
+implicit def string2parser(s: String) = StringParser(s)
+
+def time_needed[T](i: Int, code: => T) = {
+ val start = System.nanoTime()
+ for (j <- 1 to i) code
+ val end = System.nanoTime()
+ (end - start)/(i * 1.0e9)
+}
+
+// unambiguous grammar
+
+lazy val U: Parser[String, String] =
+ ("1" ~ U) ==> { case (x, y) => "1" + y} || ""
+
+def test1(i: Int) = {
+ val result = U.parse_all("1" * i)
+ //print(result.size + " ")
+}
+
+for (i <- 1 to 1000 by 50) {
+ print(i + " ")
+ print("%.5f".format(time_needed(1, test1(i))))
+ print("\n")
+}
+
+
+
+// ambiguous grammar
+// n = 16 -> over 35 million parse trees
+
+lazy val S: Parser[String, String] =
+ ("1" ~ S ~ S) ==> { case ((x, y), z) => "1" + y + z} || ""
+
+def test2(i: Int) = {
+ val result = S.parse_all("1" * i)
+ print(result.size + " ")
+}
+
+for (i <- 1 to 30) {
+ print(i + " ")
+ print("%.5f".format(time_needed(1, test2(i))))
+ print("\n")
+}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Term_grammar.scala Mon Nov 19 14:18:42 2012 +0000
@@ -0,0 +1,62 @@
+//:load matcher.scala
+//:load parser3.scala
+
+// some regular expressions
+val LETTER = RANGE("abcdefghijklmnopqrstuvwxyz")
+val ID = PLUS(LETTER)
+
+val DIGIT = RANGE("0123456789")
+val NONZERODIGIT = RANGE("123456789")
+val NUMBER = ALT(SEQ(NONZERODIGIT, STAR(DIGIT)), "0")
+
+val LPAREN = CHAR('(')
+val RPAREN = CHAR(')')
+
+val WHITESPACE = PLUS(RANGE(" \n"))
+val OPS = RANGE("+-*")
+
+// for classifying the strings that have been lexed
+abstract class Token
+
+case object T_WHITESPACE extends Token
+case class T_NUM(s: String) extends Token
+case class T_OP(s: String) extends Token
+case object T_LPAREN extends Token
+case object T_RPAREN extends Token
+
+
+// lexing rules for arithmetic expressions
+val lexing_rules: List[Rule[Token]]=
+ List((NUMBER, (s) => T_NUM(s.mkString)),
+ (WHITESPACE, (s) => T_WHITESPACE),
+ (LPAREN, (s) => T_LPAREN),
+ (RPAREN, (s) => T_RPAREN),
+ (OPS, (s) => T_OP(s.mkString)))
+
+val Tk = Tokenizer(lexing_rules, List(T_WHITESPACE))
+
+
+case class TokParser(tok: Token) extends Parser[List[Token], Token] {
+ def parse(ts: List[Token]) = ts match {
+ case t::ts if (t == tok) => Set((t, ts))
+ case _ => Set ()
+ }
+}
+implicit def token2tparser(t: Token) = TokParser(t)
+
+case object NumParser extends Parser[List[Token], Int] {
+ def parse(ts: List[Token]) = ts match {
+ case T_NUM(s)::ts => Set((s.toInt, ts))
+ case _ => Set ()
+ }
+}
+
+lazy val E: Parser[List[Token], Int] = (T ~ T_OP("+") ~ E) ==> { case ((x, y), z) => x + z } || T
+lazy val T: Parser[List[Token], Int] = (F ~ T_OP("*") ~ T) ==> { case ((x, y), z) => x * z } || F
+lazy val F: Parser[List[Token], Int] = (T_LPAREN ~> E <~ T_RPAREN) || NumParser
+
+println(E.parse_all(Tk.fromString("1 + 2 + 3")))
+println(E.parse_all(Tk.fromString("1 + 2 * 3")))
+println(E.parse_all(Tk.fromString("(1 + 2) * 3")))
+println(E.parse_all(Tk.fromString("(14 + 2) * (3 + 2)")))
+
--- a/crawler1.scala Wed Nov 14 08:46:00 2012 +0000
+++ b/crawler1.scala Mon Nov 19 14:18:42 2012 +0000
@@ -42,3 +42,4 @@
// call on the command line
crawl(startURL, 2)
+crawl("""http://www.dcs.kcl.ac.uk/staff/urbanc/msc-projects-12.html""", 2)
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/html-tokens.scala Mon Nov 19 14:18:42 2012 +0000
@@ -0,0 +1,112 @@
+import Console._
+
+// regular expressions including NOT
+abstract class Rexp {
+ def ~ (right : Rexp) = SEQ(this, right)
+ def || (right : Rexp) = ALT(this, right)
+}
+case object NULL extends Rexp
+case object EMPTY extends Rexp
+case class CHAR(c: Char) extends Rexp
+case class ALT(r1: Rexp, r2: Rexp) extends Rexp
+case class SEQ(r1: Rexp, r2: Rexp) extends Rexp
+case class STAR(r: Rexp) extends Rexp
+case class NOT(r: Rexp) extends Rexp
+
+// some convenience for typing in regular expressions
+def charlist2rexp(s : List[Char]) : Rexp = s match {
+ case Nil => EMPTY
+ case c::Nil => CHAR(c)
+ case c::s => SEQ(CHAR(c), charlist2rexp(s))
+}
+implicit def string2rexp(s : String) : Rexp = charlist2rexp(s.toList)
+
+
+// nullable function: tests whether the regular
+// expression can recognise the empty string
+def nullable (r: Rexp) : Boolean = r match {
+ case NULL => false
+ case EMPTY => true
+ case CHAR(_) => false
+ case ALT(r1, r2) => nullable(r1) || nullable(r2)
+ case SEQ(r1, r2) => nullable(r1) && nullable(r2)
+ case STAR(_) => true
+ case NOT(r) => !(nullable(r))
+}
+
+// tests whether a regular expression
+// cannot recognise more
+def no_more (r: Rexp) : Boolean = r match {
+ case NULL => true
+ case EMPTY => false
+ case CHAR(_) => false
+ case ALT(r1, r2) => no_more(r1) && no_more(r2)
+ case SEQ(r1, r2) => if (nullable(r1)) (no_more(r1) && no_more(r2)) else no_more(r1)
+ case STAR(_) => false
+ case NOT(r) => !(no_more(r))
+}
+
+
+// derivative of a regular expression w.r.t. a character
+def der (c: Char, r: Rexp) : Rexp = r match {
+ case NULL => NULL
+ case EMPTY => NULL
+ case CHAR(d) => if (c == d) EMPTY else NULL
+ case ALT(r1, r2) => ALT(der(c, r1), der(c, r2))
+ case SEQ(r1, r2) =>
+ if (nullable(r1)) ALT(SEQ(der(c, r1), r2), der(c, r2))
+ else SEQ(der(c, r1), r2)
+ case STAR(r) => SEQ(der(c, r), STAR(r))
+ case NOT(r) => NOT(der (c, r))
+}
+
+def error (s: String) = "Could not lex " + s
+
+def munch(r: Rexp, s: List[Char], t: List[Char]) : Option[(List[Char], List[Char])] = {
+ //println("Look at" + s);
+ s match {
+ case Nil if (nullable(r)) => Some(Nil, t)
+ case Nil => None
+ case c::s if (no_more(der (c, r)) && nullable(r)) => Some(c::s, t)
+ case c::s if (no_more(der (c, r))) => None
+ case c::s => munch(der (c, r), s, t ::: List(c))
+ }
+}
+
+def one_string (regs: List[Rexp], s: List[Char]) : Either[(List[Char], List[Char]), String] = {
+ val somes = regs.map { munch(_, s, Nil) } .flatten
+ if (somes == Nil) Right(error(s.mkString)) else Left(somes sortBy (_._1.length) head)
+}
+
+def tokenize (regs: List[Rexp], s: List[Char]) : List[String] = s match {
+ case Nil => Nil
+ case _ => one_string(regs, s) match {
+ case Left((rest, s)) => { println("tokenized: " + s.mkString) ; s.mkString :: tokenize(regs, rest) }
+ case Right(msg) => { println(msg); sys.exit() }
+ }
+}
+
+
+// regular expression for specifying
+// ranges of characters
+def RANGE(s : List[Char]) : Rexp = s match {
+ case Nil => NULL
+ case c::Nil => CHAR(c)
+ case c::s => CHAR(c) || RANGE(s)
+}
+
+//one or more
+def PLUS(r: Rexp) = r ~ STAR(r)
+
+<font color="red">
+//some regular expressions
+val COLOUR = "BLACK" || "BLUE" || "CYAN" || "GREEN" || "MAGENTA" || "RED" || "WHITE" || "YELLOW"
+
+//BOLD || BLINK
+//INVISIBLE
+//RESET
+//REVERSED
+//UNDERLINED
+
+println(RED + BOLD + "test")
+println(RESET)
--- a/matcher.scala Wed Nov 14 08:46:00 2012 +0000
+++ b/matcher.scala Mon Nov 19 14:18:42 2012 +0000
@@ -11,15 +11,6 @@
case class NOT(r: Rexp) extends Rexp
-// some convenience for typing in regular expressions
-def charlist2rexp(s : List[Char]) : Rexp = s match {
- case Nil => EMPTY
- case c::Nil => CHAR(c)
- case c::s => SEQ(CHAR(c), charlist2rexp(s))
-}
-implicit def string2rexp(s : String) : Rexp = charlist2rexp(s.toList)
-
-
// nullable function: tests whether the regular
// expression can recognise the empty string
def nullable (r: Rexp) : Boolean = r match {
@@ -59,42 +50,74 @@
// regular expression for specifying
// ranges of characters
-def RANGE(s : List[Char]) : Rexp = s match {
+def Range(s : List[Char]) : Rexp = s match {
case Nil => NULL
case c::Nil => CHAR(c)
- case c::s => ALT(CHAR(c), RANGE(s))
+ case c::s => ALT(CHAR(c), Range(s))
}
+def RANGE(s: String) = Range(s.toList)
+
// one or more
def PLUS(r: Rexp) = SEQ(r, STAR(r))
+// many alternatives
+def Alts(rs: List[Rexp]) : Rexp = rs match {
+ case Nil => NULL
+ case r::Nil => r
+ case r::rs => ALT(r, Alts(rs))
+}
+def ALTS(rs: Rexp*) = Alts(rs.toList)
+
+// repetitions
+def Seqs(rs: List[Rexp]) : Rexp = rs match {
+ case Nil => NULL
+ case r::Nil => r
+ case r::rs => SEQ(r, Seqs(rs))
+}
+def SEQS(rs: Rexp*) = Seqs(rs.toList)
+
+// some convenience for typing in regular expressions
+def charlist2rexp(s : List[Char]) : Rexp = s match {
+ case Nil => EMPTY
+ case c::Nil => CHAR(c)
+ case c::s => SEQ(CHAR(c), charlist2rexp(s))
+}
+implicit def string2rexp(s : String) : Rexp = charlist2rexp(s.toList)
+
type Rule[T] = (Rexp, List[Char] => T)
-def error (s: String) = throw new IllegalArgumentException ("Cannot tokenize: " + s)
+case class Tokenizer[T](rules: List[Rule[T]], excl: List[T] = Nil) {
-def munch[T](r: Rexp, action: List[Char] => T, s: List[Char], t: List[Char]) : Option[(List[Char], T)] =
- s match {
- case Nil if (nullable(r)) => Some(Nil, action(t))
- case Nil => None
- case c::s if (no_more(der (c, r)) && nullable(r)) => Some(c::s, action(t))
- case c::s if (no_more(der (c, r))) => None
- case c::s => munch(der (c, r), action, s, t ::: List(c))
+ def munch(r: Rexp, action: List[Char] => T, s: List[Char], t: List[Char]) : Option[(List[Char], T)] =
+ s match {
+ case Nil if (nullable(r)) => Some(Nil, action(t))
+ case Nil => None
+ case c::s if (no_more(der (c, r)) && nullable(r)) => Some(c::s, action(t))
+ case c::s if (no_more(der (c, r))) => None
+ case c::s => munch(der (c, r), action, s, t ::: List(c))
+ }
+
+ def one_token(s: List[Char]) : Either[(List[Char], T), String] = {
+ val somes = rules.map { (r) => munch(r._1, r._2, s, Nil) }.flatten
+ if (somes == Nil) Right(s.mkString)
+ else Left(somes sortBy (_._1.length) head)
}
-def one_token[T](rs: List[Rule[T]], s: List[Char]) : (List[Char], T) = {
- val somes = rs.map { (r) => munch(r._1, r._2, s, Nil) } .flatten
- if (somes == Nil) error(s.mkString) else (somes sortBy (_._1.length) head)
+ def tokenize(cs: List[Char]) : List[T] = cs match {
+ case Nil => Nil
+ case _ => one_token(cs) match {
+ case Left((rest, token)) => token :: tokenize(rest)
+ case Right(s) => { println("Cannot tokenize: \"" + s + "\""); Nil }
+ }
+ }
+
+ def fromString(s: String) : List[T] =
+ tokenize(s.toList).filterNot(excl.contains(_))
+
+ def fromFile(name: String) : List[T] =
+ fromString(io.Source.fromFile(name).mkString)
+
}
-def tokenize[T](rs: List[Rule[T]], s: List[Char]) : List[T] = s match {
- case Nil => Nil
- case _ => one_token(rs, s) match {
- case (rest, token) => token :: tokenize(rs, rest)
- }
-}
-
-
-
-
-
--- a/parser2.scala Wed Nov 14 08:46:00 2012 +0000
+++ b/parser2.scala Mon Nov 19 14:18:42 2012 +0000
@@ -115,6 +115,7 @@
lazy val T: Parser = (F ~ T_OP("*") ~ T) || F
lazy val F: Parser = (T_LPAREN ~ E ~ T_RPAREN) || NumParser
+tokenizer(lexing_rules, "1 + 2 + 3")
println(E.parse_all(tokenizer(lexing_rules, "1 + 2 + 3")))
def eval(t: ParseTree) : Int = t match {
--- a/parser2a.scala Wed Nov 14 08:46:00 2012 +0000
+++ b/parser2a.scala Mon Nov 19 14:18:42 2012 +0000
@@ -94,7 +94,7 @@
}
}
-lazy val E: Parser[Int] = (T ~ T_OP("+") ~ E) ==> { case ((x, y), z) => x + z } || T // start symbol
+lazy val E: Parser[Int] = (T ~ T_OP("+") ~ E) ==> { case ((x, y), z) => x + z } || T
lazy val T: Parser[Int] = (F ~ T_OP("*") ~ T) ==> { case ((x, y), z) => x * z } || F
lazy val F: Parser[Int] = (T_LPAREN ~> E <~ T_RPAREN) || NumParser
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/parser3.scala Mon Nov 19 14:18:42 2012 +0000
@@ -0,0 +1,32 @@
+
+// parser combinators with input type I and return type T
+
+abstract class Parser[I <% Seq[_], T] {
+ def parse(ts: I): Set[(T, I)]
+
+ def parse_all(ts: I) : Set[T] =
+ for ((head, tail) <- parse(ts); if (tail.isEmpty)) yield head
+
+ def || (right : => Parser[I, T]) : Parser[I, T] = new AltParser(this, right)
+ def ==>[S] (f: => T => S) : Parser [I, S] = new FunParser(this, f)
+ def ~[S] (right : => Parser[I, S]) : Parser[I, (T, S)] = new SeqParser(this, right)
+ def ~>[S] (right : => Parser[I, S]) : Parser[I, S] = this ~ right ==> (_._2)
+ def <~[S] (right : => Parser[I, S]) : Parser[I, T] = this ~ right ==> (_._1)
+}
+
+class SeqParser[I <% Seq[_], T, S](p: => Parser[I, T], q: => Parser[I, S]) extends Parser[I, (T, S)] {
+ def parse(sb: I) =
+ for ((head1, tail1) <- p.parse(sb);
+ (head2, tail2) <- q.parse(tail1)) yield ((head1, head2), tail2)
+}
+
+class AltParser[I <% Seq[_], T](p: => Parser[I, T], q: => Parser[I, T]) extends Parser[I, T] {
+ def parse(sb: I) = p.parse(sb) ++ q.parse(sb)
+}
+
+class FunParser[I <% Seq[_], T, S](p: => Parser[I, T], f: T => S) extends Parser[I, S] {
+ def parse(sb: I) =
+ for ((head, tail) <- p.parse(sb)) yield (f(head), tail)
+}
+
+
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/parser4.scala Mon Nov 19 14:18:42 2012 +0000
@@ -0,0 +1,111 @@
+
+// parser combinators with input type I and return type T
+// and memoisation
+
+case class SubString(s: String, l: Int, h: Int) {
+ def low = l
+ def high = h
+ def length = h - l
+ def substring(l: Int = l, h: Int = h) = s.slice(l, h)
+ def set(low: Int = l, high: Int = h) = SubString(s, low, high)
+
+}
+
+type Ctxt = List[(String, SubString)]
+
+abstract class Parser[T] {
+
+ def parse(ts: SubString, ctxt: Ctxt): Set[(T, SubString)]
+
+ def parse_all(s: String) : Set[T] =
+ for ((head, tail) <- parse(SubString(s, 0, s.length), Nil); if (tail.substring() == "")) yield head
+
+ def || (right : => Parser[T]) : Parser[T] = new AltParser(this, right)
+ def ==>[S] (f: => T => S) : Parser [S] = new FunParser(this, f)
+ def ~[S] (right : => Parser[S]) : Parser[(T, S)] = new SeqParser(this, right)
+ def ~>[S] (right : => Parser[S]) : Parser[S] = this ~ right ==> (_._2)
+ def <~[S] (right : => Parser[S]) : Parser[T] = this ~ right ==> (_._1)
+}
+
+class SeqParser[T, S](p: => Parser[T], q: => Parser[S]) extends Parser[(T, S)] {
+ def parse(sb: SubString, ctxt: Ctxt) =
+ for ((head1, tail1) <- p.parse(sb, ctxt);
+ (head2, tail2) <- q.parse(tail1, ctxt)) yield ((head1, head2), tail2)
+}
+
+class AltParser[T](p: => Parser[T], q: => Parser[T]) extends Parser[T] {
+ def parse(sb: SubString, ctxt: Ctxt) = p.parse(sb, ctxt) ++ q.parse(sb, ctxt)
+}
+
+class FunParser[T, S](p: => Parser[T], f: T => S) extends Parser[S] {
+ def parse(sb: SubString, ctxt: Ctxt) =
+ for ((head, tail) <- p.parse(sb, ctxt)) yield (f(head), tail)
+}
+
+case class SubStringParser(s: String) extends Parser[SubString] {
+ val n = s.length
+ def parse(sb: SubString, ctxt: Ctxt) = {
+ if (n <= sb.length && sb.substring(sb.low, sb.low + n) == s)
+ Set((sb.set(high = sb.low + n), sb.set(low = sb.low + n)))
+ else Set()
+ }
+}
+
+implicit def string2parser(s: String) = SubStringParser(s) ==> (_.substring())
+
+class IgnLst[T](p: => Parser[T]) extends Parser[T] {
+ def parse(sb: SubString, ctxt: Ctxt) = {
+ if (sb.length == 0) Set()
+ else for ((head, tail) <- p.parse(sb.set(high = sb.high - 1), ctxt))
+ yield (head, tail.set(high = tail.high + 1))
+ }
+}
+
+class CHECK[T](nt: String, p: => Parser[T]) extends Parser[T] {
+ def parse(sb: SubString, ctxt: Ctxt) = {
+ val should_trim = ctxt.contains (nt, sb)
+ if (should_trim && sb.length == 0) Set()
+ else if (should_trim) new IgnLst(p).parse(sb, (nt, sb)::ctxt)
+ else p.parse(sb, (nt, sb)::ctxt)
+ }
+}
+
+lazy val E: Parser[Int] =
+ new CHECK("E", (E ~ "+" ~ E) ==> { case ((x, y), z) => x + z} ||
+ (E ~ "*" ~ E) ==> { case ((x, y), z) => x * z} ||
+ ("(" ~ E ~ ")") ==> { case ((x, y), z) => y} ||
+ "0" ==> { (s) => 0 } ||
+ "1" ==> { (s) => 1 } ||
+ "2" ==> { (s) => 2 } ||
+ "3" ==> { (s) => 3 })
+
+println("foo " + E.parse_all("1+2*3"))
+
+
+// ambiguous grammar
+
+lazy val S: Parser[String] =
+ new CHECK("S", ("1" ~ S ~ S) ==> { case ((x, y), z) => "1" + y + z} || "")
+
+lazy val S2: Parser[String] =
+ new CHECK("S2", (S2 ~ S2 ~ S2) ==> { case ((x, y), z) => x + y + z} || "1" || "")
+
+def test2(i: Int) = {
+ val result = E.parse_all("1" * i)
+ print(result.size + " " + result + " ")
+}
+
+def time_needed[T](i: Int, code: => T) = {
+ val start = System.nanoTime()
+ for (j <- 1 to i) code
+ val end = System.nanoTime()
+ (end - start)/(i * 1.0e9)
+}
+
+
+for (i <- 1 to 10) {
+ print(i + " ")
+ print("%.5f".format(time_needed(1, test2(i))))
+ print("\n")
+}
+
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/parser5.scala Mon Nov 19 14:18:42 2012 +0000
@@ -0,0 +1,113 @@
+val DIGIT = RANGE("0123456789")
+val NONZERODIGIT = RANGE("123456789")
+
+val NUMBER = ALT(SEQ(NONZERODIGIT, STAR(DIGIT)), "0")
+val LPAREN = CHAR('(')
+val RPAREN = CHAR(')')
+val WHITESPACE = PLUS(RANGE(" \n"))
+val OPS = RANGE("+-*")
+
+// for classifying the strings that have been recognised
+abstract class Token
+case object T_WHITESPACE extends Token
+case class T_NUM(s: String) extends Token
+case class T_OP(s: String) extends Token
+case object T_LPAREN extends Token
+case object T_RPAREN extends Token
+
+val lexing_rules: List[Rule[Token]]=
+ List((NUMBER, (s) => T_NUM(s.mkString)),
+ (WHITESPACE, (s) => T_WHITESPACE),
+ (LPAREN, (s) => T_LPAREN),
+ (RPAREN, (s) => T_RPAREN),
+ (OPS, (s) => T_OP(s.mkString)))
+
+val Tk = Tokenizer(lexing_rules, List(T_WHITESPACE))
+
+
+// parser combinators with input type I and return type T
+// and memoisation
+
+case class SubList[T](s: List[T], l: Int, h: Int) {
+ def low = l
+ def high = h
+ def length = h - l
+ def sublist(l: Int = l, h: Int = h) = s.slice(l, h)
+ def set(low: Int = l, high: Int = h) = SubList(s, low, high)
+}
+
+type Ctxt[T] = List[(String, SubList[T])]
+
+abstract class Parser[I, T] {
+
+ def parse(ts: SubList[I], ctxt: Ctxt[I]): Set[(T, SubList[I])]
+
+ def parse_all(s: List[I]) : Set[T] =
+ for ((head, tail) <- parse(SubList(s, 0, s.length), Nil); if (tail.sublist() == Nil)) yield head
+
+ def || (right : => Parser[I, T]) : Parser[I, T] = new AltParser(this, right)
+ def ==>[S] (f: => T => S) : Parser [I, S] = new FunParser(this, f)
+ def ~[S] (right : => Parser[I, S]) : Parser[I, (T, S)] = new SeqParser(this, right)
+ def ~>[S] (right : => Parser[I, S]) : Parser[I, S] = this ~ right ==> (_._2)
+ def <~[S] (right : => Parser[I, S]) : Parser[I, T] = this ~ right ==> (_._1)
+}
+
+class SeqParser[I, T, S](p: => Parser[I, T], q: => Parser[I, S]) extends Parser[I, (T, S)] {
+ def parse(sb: SubList[I], ctxt: Ctxt[I]) =
+ for ((head1, tail1) <- p.parse(sb, ctxt);
+ (head2, tail2) <- q.parse(tail1, ctxt)) yield ((head1, head2), tail2)
+}
+
+class AltParser[I, T](p: => Parser[I, T], q: => Parser[I, T]) extends Parser[I, T] {
+ def parse(sb: SubList[I], ctxt: Ctxt[I]) = p.parse(sb, ctxt) ++ q.parse(sb, ctxt)
+}
+
+class FunParser[I, T, S](p: => Parser[I, T], f: T => S) extends Parser[I, S] {
+ def parse(sb: SubList[I], ctxt: Ctxt[I]) =
+ for ((head, tail) <- p.parse(sb, ctxt)) yield (f(head), tail)
+}
+
+case object NumParser extends Parser[Token, Int] {
+ def parse(sb: SubList[Token], ctxt: Ctxt[Token]) = {
+ if (0 < sb.length) sb.sublist(sb.low, sb.low + 1) match {
+ case T_NUM(i)::Nil => Set((i.toInt, sb.set(low = sb.low + 1)))
+ case _ => Set()
+ }
+ else Set()
+ }
+}
+
+case class TokParser(t: Token) extends Parser[Token, Token] {
+ def parse(sb: SubList[Token], ctxt: Ctxt[Token]) = {
+ if (0 < sb.length && sb.sublist(sb.low, sb.low + 1) == List(t)) Set((t, sb.set(low = sb.low + 1)))
+ else Set()
+ }
+}
+
+implicit def token2tparser(t: Token) = TokParser(t)
+
+class IgnLst[I, T](p: => Parser[I, T]) extends Parser[I, T] {
+ def parse(sb: SubList[I], ctxt: Ctxt[I]) = {
+ if (sb.length == 0) Set()
+ else for ((head, tail) <- p.parse(sb.set(high = sb.high - 1), ctxt))
+ yield (head, tail.set(high = tail.high + 1))
+ }
+}
+
+class CHECK[I, T](nt: String, p: => Parser[I, T]) extends Parser[I, T] {
+ def parse(sb: SubList[I], ctxt: Ctxt[I]) = {
+ val should_trim = ctxt.contains (nt, sb)
+ if (should_trim && sb.length == 0) Set()
+ else if (should_trim) new IgnLst(p).parse(sb, (nt, sb)::ctxt)
+ else p.parse(sb, (nt, sb)::ctxt)
+ }
+}
+
+lazy val E: Parser[Token, Int] =
+ new CHECK("E", (E ~ T_OP("+") ~ E) ==> { case ((x, y), z) => x + z} ||
+ (E ~ T_OP("*") ~ E) ==> { case ((x, y), z) => x * z} ||
+ (T_LPAREN ~ E ~ T_RPAREN) ==> { case ((x, y), z) => y} ||
+ NumParser)
+
+println(E.parse_all(Tk.fromString("1 + 2 * 3")))
+println(E.parse_all(Tk.fromString("(1 + 2) * 3")))
Binary file slides07.pdf has changed
--- a/slides07.tex Wed Nov 14 08:46:00 2012 +0000
+++ b/slides07.tex Mon Nov 19 14:18:42 2012 +0000
@@ -359,9 +359,9 @@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[c]
-\frametitle{\begin{tabular}{c}CFG\end{tabular}}
+\frametitle{\begin{tabular}{c}CFGs\end{tabular}}
-A \alert{context-free} grammar \bl{$G$} consists of
+A \alert{context-free} grammar (CFG) \bl{$G$} consists of:
\begin{itemize}
\item a finite set of nonterminal symbols (upper case)
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test.html Mon Nov 19 14:18:42 2012 +0000
@@ -0,0 +1,37 @@
+<b>MSc Projects</b>
+
+<p>
+start of paragraph. <cyan> a <red>cyan</red> word</cyan> normal again something longer.
+</p>
+
+
+ <p><b>Description:</b>
+ <a>Regular expressions</a> are extremely useful for many text-processing tasks such as finding patterns in texts,
+ lexing programs, syntax highlighting and so on. Given that regular expressions were
+ introduced in 1950 by <a>Stephen Kleene</a>, you might think
+ regular expressions have since been studied and implemented to death. But you would definitely be mistaken: in fact they are still
+ an active research area. For example
+ <a>this paper</a>
+ about regular expression matching and partial derivatives was presented this summer at the international
+ PPDP'12 conference. The task in this project is to implement the results from this paper.</p>
+
+ <p>The background for this project is that some regular expressions are
+ <a>evil</a>
+ and can stab you in the back; according to
+ this <a>blog post</a>.
+ For example, if you use in <a>Python</a> or
+ in <a>Ruby</a> (probably also in other mainstream programming languages) the
+ innocently looking regular expression a?{28}a{28} and match it, say, against the string
+ <red>aaaaaaaaaaaaaaaaaaaaaaaaaaaa</red> (that is 28 as), you will soon notice that your CPU usage goes to 100%. In fact,
+ Python and Ruby need approximately 30 seconds of hard work for matching this string. You can try it for yourself:
+ <a>re.py</a> (Python version) and
+ <a>re.rb</a>
+ (Ruby version). You can imagine an attacker
+ mounting a nice <a>DoS attack</a> against
+ your program if it contains such an evil regular expression. Actually
+ <a>Scala</a> (and also Java) are almost immune from such
+ attacks as they can deal with strings of up to 4,300 as in less than a second. But if you scale
+ the regular expression and string further to, say, 4,600 as, then you get a
+ StackOverflowError
+ potentially crashing your program.
+ </p>