updated
authorChristian Urban <christian dot urban at kcl dot ac dot uk>
Thu, 01 Oct 2015 22:10:00 +0100
changeset 335 2d112a7b29eb
parent 334 fd89a63e9db3
child 336 7c80b9b6f713
updated
slides/slides02.pdf
slides/slides02.tex
Binary file slides/slides02.pdf has changed
--- a/slides/slides02.tex	Thu Oct 01 21:22:03 2015 +0100
+++ b/slides/slides02.tex	Thu Oct 01 22:10:00 2015 +0100
@@ -45,7 +45,8 @@
 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 \begin{frame}[c]
-\frametitle{\begin{tabular}{@ {}c@ {}}An Efficient Regular\\[-1mm] 
+\frametitle{\begin{tabular}{@ {}c@ {}}
+    An Efficient Regular\\[-1mm] 
     Expression Matcher\end{tabular}}
 
 \footnotesize
@@ -103,14 +104,9 @@
 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 \begin{frame}[c]
-\frametitle{Languages, Strings}
+\frametitle{Languages}
 
 \begin{itemize}
-\item \alert{\bf Strings} are lists of characters, for example
-\begin{center}
-\bl{$[]$},\;\bl{$abc$}  \hspace{2cm}(Pattern match: \bl{$c\!::\!s$})
-\end{center}\bigskip
-
 
 \item A \alert{\bf language} is a set of strings, for example\medskip
 \begin{center}
@@ -125,18 +121,110 @@
 \bl{$A\;@\;B$} & \bl{$\dn$} & \bl{$\{ s_1\,@\,s_2 \;\mid\; s_1 \in A \wedge s_2 \in B\}$}
 \end{tabular}
 \end{center}
+\bigskip
 
-%\item The \alert{\bf meaning} of a regular expression is a set of 
-%  strings, or language.
+\small
+\item [] For example \bl{$A = \{foo, bar\}$}, \bl{$B = \{a, b\}$}
+
+\[
+\bl{A \,@\, B = \{fooa, foob, bara, barb\}}
+\]
+
+\end{itemize}  
+
+\end{frame}
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+\begin{frame}[c]
+\frametitle{The Power Operation}
+
+\begin{itemize}
+\item The \alert{\bf Power} of a language:
+
+\begin{center}
+\begin{tabular}{lcl}
+\bl{$A^0$}     & \bl{$\dn$} & \bl{$\{[]\}$}\\
+\bl{$A^{n+1}$} & \bl{$\dn$} & \bl{$A \,@\, A^n$}
+\end{tabular}
+\end{center}\bigskip
+
+\item[] For example
+
+\begin{center}
+\begin{tabular}{l}
+\bl{$A^4 = A \,@\, A \,@\, A \,@\, A$}\\
+\bl{$A^0 \dn \{[]\}$}\\
+\end{tabular}
+\end{center}
+
 \end{itemize}  
 
 \end{frame}
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
 
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+\begin{frame}[c]
+\frametitle{The Star Operation}
+
+\begin{itemize}
+\item The \alert{\bf Star} of a \underline{language}:
+\bigskip
+
+\begin{center}
+\begin{tabular}{c}
+\bl{$A^* \dn \bigcup_{0\le n} A^n$}
+\end{tabular}
+\end{center}\bigskip
+
+\item[] This expands to 
+
+\[
+\bl{A^0 \cup A^1 \cup A^2 \cup A^3 \cup A^4 \cup \ldots}
+\]
+
+\small
+\[
+\bl{\{[]\} \;\cup\; A \;\cup\; A\,@\,A \;\cup\; 
+  A\,@\,A\,@\,A \;\cup\; A\,@\,A\,@\,A\,@\,A \cup \ldots}
+\]
+
+\end{itemize}  
+
+\end{frame}
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+\begin{frame}[c]
+\frametitle{Semantic Derivative}
+
+\begin{itemize}
+\item The \alert{\bf Semantic Derivative} of a 
+\underline{language}\\ wrt to a character \bl{$c$}:
+\bigskip
+
+\begin{center}
+\bl{$Der\,c\,A \dn \{ s \;|\;  c\!::\!s \in A\}$ } 
+\end{center}\bigskip\bigskip
+
+For \bl{$A = \{\textit{foo}, \textit{bar}, \textit{frak}\}$} then
+
+\begin{center}
+\bl{\begin{tabular}{l@{\hspace{2mm}}c@{\hspace{2mm}}l}
+$Der\,f\,A$ & $=$ & $\{\textit{oo}, \textit{rak}\}$\\
+$Der\,b\,A$ & $=$ &  $\{\textit{ar}\}$\\  
+$Der\,a\,A$ & $=$ & $\varnothing$\\
+\end{tabular}}
+\end{center}
+
+\end{itemize}
+ 
+\end{frame}
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 \begin{frame}[t]
-\frametitle{\begin{tabular}{c}Regular Expressions\end{tabular}}
+\frametitle{Regular Expressions}
 
 Their inductive definition:
 
@@ -145,9 +233,9 @@
   \begin{tabular}{@ {}rrl@ {\hspace{13mm}}l}
   \bl{$r$} & \bl{$::=$}  & \bl{$\varnothing$}  & null\\
          & \bl{$\mid$} & \bl{$\epsilon$}       & empty string / \pcode{""} / $[]$\\
-         & \bl{$\mid$} & \bl{$c$}                         & character\\
-         & \bl{$\mid$} & \bl{$r_1 \cdot r_2$} & sequence\\
-         & \bl{$\mid$} & \bl{$r_1 + r_2$}  & alternative / choice\\
+         & \bl{$\mid$} & \bl{$c$}              & character\\
+         & \bl{$\mid$} & \bl{$r_1 \cdot r_2$}  & sequence\\
+         & \bl{$\mid$} & \bl{$r_1 + r_2$}      & alternative / choice\\
          & \bl{$\mid$} & \bl{$r^*$}            & star (zero or more)\\
   \end{tabular}
   \end{textblock}
@@ -164,23 +252,18 @@
 \begin{textblock}{15}(1,4)
  \begin{tabular}{@ {}rcl}
  \bl{$L(\varnothing)$}     & \bl{$\dn$} & \bl{$\varnothing$}\\
- \bl{$L(\epsilon)$}        & \bl{$\dn$} & \bl{$\{$[]$\}$}\\
+ \bl{$L(\epsilon)$}        & \bl{$\dn$} & \bl{$\{[]\}$}\\
  \bl{$L(c)$}               & \bl{$\dn$} & \bl{$\{[c]\}$}\\
  \bl{$L(r_1 + r_2)$}       & \bl{$\dn$} & \bl{$L(r_1) \cup L(r_2)$}\\
- \bl{$L(r_1 \cdot r_2)$}  & \bl{$\dn$} & \bl{$L(r_1) \,@\, L(r_2)$}\\
- \bl{$L(r^*)$}                   & \bl{$\dn$} & \bl{$\bigcup_{n \ge 0} L(r)^n$}\\
-  \end{tabular}\bigskip
-  
-\only<2->{  
-\hspace{5mm}\textcolor{blue}{$L(r)^0 \;\dn\; \{[]\}$}\\
-\textcolor{blue}{$L(r)^{n+1} \;\dn\; L(r) \,@\, L(r)^n$}}  
+ \bl{$L(r_1 \cdot r_2)$}   & \bl{$\dn$} & \bl{$L(r_1) \,@\, L(r_2)$}\\
+ \bl{$L(r^*)$}             & \bl{$\dn$} & \bl{$(L(r))^*$}\\
+ \end{tabular}
 \end{textblock}
 
-\only<1->{
 \begin{textblock}{6}(9,12)\small
 \bl{$L$} is a function from regular expressions to sets of strings\\
 \bl{$L$ : Rexp $\Rightarrow$ Set$[$String$]$}
-\end{textblock}}
+\end{textblock}
 
 \end{frame}
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
@@ -199,7 +282,7 @@
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 \begin{frame}[c]
 \frametitle{\begin{tabular}{c}
- When Are Two Regular\\
+ When Are Two Regular\\[-1mm]
  Expressions Equivalent?\end{tabular}}
 \large
 \begin{center}
@@ -264,9 +347,9 @@
 \end{frame}
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
 
-\newcommand{\YES}{\textcolor{gray}{yes}}
-\newcommand{\NO}{\textcolor{gray}{no}}
-\newcommand{\FORALLR}{\textcolor{gray}{$\forall$ r.}}
+%\newcommand{\YES}{\textcolor{gray}{yes}}
+%\newcommand{\NO}{\textcolor{gray}{no}}
+%\newcommand{\FORALLR}{\textcolor{gray}{$\forall$ r.}}
 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 \begin{frame}[c]
@@ -283,9 +366,8 @@
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-\mode<presentation>{
 \begin{frame}[c]
-\frametitle{\begin{tabular}{c}\bl{$(a?\{n\}) \cdot a\{n\}$}\end{tabular}}
+\frametitle{\bl{$(a?\{n\}) \cdot a\{n\}$}}
 
 \begin{center}
 \begin{tikzpicture}
@@ -313,13 +395,12 @@
 \end{tikzpicture}
 \end{center}
 
-\end{frame}}
+\end{frame}
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-\mode<presentation>{
 \begin{frame}[c]
-\frametitle{\begin{tabular}{c}Evil Regular Expressions\end{tabular}}
+\frametitle{Evil Regular Expressions}
 
 \begin{itemize}
 \item \alert{R}egular \alert{e}xpression \alert{D}enial \alert{o}f \alert{S}ervice (ReDoS)\bigskip
@@ -333,49 +414,47 @@
 \end{itemize}
 \end{itemize}
 
-\end{frame}}
+\end{frame}
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-\mode<presentation>{
 \begin{frame}[t]
-\frametitle{\begin{tabular}{c}A Matching Algorithm\end{tabular}}
+\frametitle{A Matching Algorithm}
 
 
 \ldots{}whether a regular expression can match the empty string:
 \begin{center}
 \begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}l@ {}}
-\bl{$nullable(\varnothing)$}      & \bl{$\dn$} & \bl{$f\!\/alse$}\\
-\bl{$nullable(\epsilon)$}           & \bl{$\dn$} &  \bl{$true$}\\
-\bl{$nullable (c)$}                    & \bl{$\dn$} &  \bl{$f\!alse$}\\
-\bl{$nullable (r_1 + r_2)$}       & \bl{$\dn$} &  \bl{$nullable(r_1) \vee nullable(r_2)$} \\ 
-\bl{$nullable (r_1 \cdot r_2)$} & \bl{$\dn$} &  \bl{$nullable(r_1) \wedge nullable(r_2)$} \\
-\bl{$nullable (r^*)$}                 & \bl{$\dn$} & \bl{$true$} \\
+\bl{$nullable(\varnothing)$}    & \bl{$\dn$} & \bl{\textit{false}}\\
+\bl{$nullable(\epsilon)$}       & \bl{$\dn$} & \bl{\textit{true}}\\
+\bl{$nullable (c)$}             & \bl{$\dn$} & \bl{\textit{false}}\\
+\bl{$nullable (r_1 + r_2)$}     & \bl{$\dn$} & \bl{$nullable(r_1) \vee nullable(r_2)$} \\ 
+\bl{$nullable (r_1 \cdot r_2)$} & \bl{$\dn$} & \bl{$nullable(r_1) \wedge nullable(r_2)$} \\
+\bl{$nullable (r^*)$}           & \bl{$\dn$} & \bl{\textit{true}}\\
 \end{tabular}
 \end{center}
 
-\end{frame}}
+\end{frame}
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
 
 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-\mode<presentation>{
 \begin{frame}[c]
-\frametitle{\begin{tabular}{c}The Derivative of a Rexp\end{tabular}}
+\frametitle{The Derivative of a Rexp}
 
 \large
 If \bl{$r$} matches the string \bl{$c\!::\!s$}, what is a regular 
-expression that matches \bl{$s$}?\bigskip\bigskip\bigskip\bigskip
+expression that matches just \bl{$s$}?\bigskip\bigskip\bigskip\bigskip
 
 \small
 \bl{$der\,c\,r$} gives the answer, Brzozowski 1964
-\end{frame}}
+\end{frame}
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 \mode<presentation>{
 \begin{frame}[c]
-\frametitle{\begin{tabular}{c}The Derivative of a Rexp (2)\end{tabular}}
+\frametitle{The Derivative of a Rexp}
 
 \begin{center}
 \begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}l@ {\hspace{-10mm}}l@ {}}
@@ -386,7 +465,7 @@
   \bl{$der\, c\, (r_1 \cdot r_2)$}  & \bl{$\dn$}  & \bl{if $nullable (r_1)$}\\
   & & \bl{then $(der\,c\,r_1) \cdot r_2 + der\, c\, r_2$}\\ 
   & & \bl{else $(der\, c\, r_1) \cdot r_2$}\\
-  \bl{$der\, c\, (r^*)$}          & \bl{$\dn$} & \bl{$(der\,c\,r) \cdot (r^*)$} &\medskip\\\pause
+  \bl{$der\, c\, (r^*)$}          & \bl{$\dn$} & \bl{$(der\,c\,r) \cdot (r^*)$} &\bigskip\\\pause
 
   \bl{$\textit{ders}\, []\, r$}     & \bl{$\dn$} & \bl{$r$} & \\
   \bl{$\textit{ders}\, (c\!::\!s)\, r$} & \bl{$\dn$} & \bl{$\textit{ders}\,s\,(der\,c\,r)$} & \\
@@ -397,22 +476,20 @@
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-\mode<presentation>{
 \begin{frame}[c]
-\frametitle{\begin{tabular}{c}Examples\end{tabular}}
+\frametitle{Examples}
 
 Given \bl{$r \dn ((a \cdot b) + b)^*$} what is
 
 \begin{center}
 \begin{tabular}{l}
-\bl{$der\,a\,r =?$}\\
-\bl{$der\,b\,r =?$}\\
-\bl{$der\,c\,r =?$}
+\bl{$der\,a\,r =\;?$}\\
+\bl{$der\,b\,r =\;?$}\\
+\bl{$der\,c\,r =\;?$}
 \end{tabular}
 \end{center}
 
-
-\end{frame}}
+\end{frame}
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@@ -430,7 +507,8 @@
         & whether \bl{$r_4$} can recognise\\
         & the empty string\smallskip\\
 Output: & result of the test\\
-        & $\Rightarrow true \,\text{or}\, \textit{false}$\\        
+        & $\Rightarrow \bl{\textit{true}} \,\text{or}\, 
+                       \bl{\textit{false}}$\\        
 \end{tabular}
 \end{center}
 
@@ -439,7 +517,25 @@
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-\mode<presentation>{
+\begin{frame}[c]
+\frametitle{The Idea of the Algorithm}
+
+If we want to recognise the string \bl{$abc$} with regular 
+expression \bl{$r_1$} then\medskip
+
+\begin{enumerate}
+\item \bl{$Der\,a\,(L(r_1))$}\pause
+\item \bl{$Der\,b\,(Der\,a\,(L(r_1)))$}\pause
+\item \bl{$Der\,c\,(Der\,b\,(Der\,a\,(L(r_1))))$}\bigskip
+\item finally we test whether the empty string is in this set\medskip
+\end{enumerate}
+
+The matching algorithm works similarly, just over regular expressions instead of sets.
+\end{frame}
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
+
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 \begin{frame}[c]
 \frametitle{\begin{tabular}{c}\bl{$(a?\{n\}) \cdot a\{n\}$}\end{tabular}}
 
@@ -470,15 +566,15 @@
 \end{tikzpicture}
 \end{center}
 
-\end{frame}}
+\end{frame}
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-\mode<presentation>{
 \begin{frame}[c]
-\frametitle{\begin{tabular}{c}A Problem\end{tabular}}
+\frametitle{A Problem}
 
-We represented the ``n-times'' \bl{$a\{n\}$} as a sequence regular expression:
+We represented the ``n-times'' \bl{$a\{n\}$} as a 
+sequence regular expression:
 
 \begin{center}
 \begin{tabular}{rl}
@@ -492,14 +588,14 @@
 \end{tabular}
 \end{center}
 
-This problem is aggravated with \bl{$a?$} being represented as \bl{$\epsilon + a$}.
-\end{frame}}
+This problem is aggravated with \bl{$a?$} being represented 
+as \bl{$\epsilon + a$}.
+\end{frame}
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-\mode<presentation>{
 \begin{frame}[c]
-\frametitle{\begin{tabular}{c}Solving the Problem\end{tabular}}
+\frametitle{Solving the Problem}
 
 What happens if we extend our regular expressions
 
@@ -512,14 +608,13 @@
 \end{center}
 
 What is their meaning? What are the cases for \bl{$nullable$} and \bl{$der$}?
-\end{frame}}
+\end{frame}
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
 
 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-\mode<presentation>{
 \begin{frame}[t]
-\frametitle{\begin{tabular}{c}\bl{$(a?\{n\}) \cdot a\{n\}$}\end{tabular}}
+\frametitle{\bl{$(a?\{n\}) \cdot a\{n\}$}}
 
 \begin{center}
 \begin{tikzpicture}
@@ -550,7 +645,7 @@
 \end{tikzpicture}
 \end{center}
 
-\end{frame}}
+\end{frame}
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%