updated slides
authorChristian Urban <christian dot urban at kcl dot ac dot uk>
Sat, 03 Oct 2015 23:30:48 +0100
changeset 345 0922b3e01289
parent 344 408fd5994288
child 346 a98794b11ac4
updated slides
slides/slides02.pdf
slides/slides02.tex
Binary file slides/slides02.pdf has changed
--- a/slides/slides02.tex	Sat Oct 03 00:44:58 2015 +0100
+++ b/slides/slides02.tex	Sat Oct 03 23:30:48 2015 +0100
@@ -228,7 +228,7 @@
 
 \begin{center}
 \bl{$Der\,c\,A \dn \{ s \;|\;  c\!::\!s \in A\}$ } 
-\end{center}\bigskip\bigskip\bigskip3
+\end{center}\bigskip\bigskip\bigskip
 
 For \bl{$A = \{\textit{foo}, \textit{bar}, \textit{frak}\}$} then
 
@@ -403,7 +403,7 @@
 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 \begin{frame}[c]
-\frametitle{\bl{$(a?\{n\}) \cdot a\{n\}$}}
+\frametitle{\bl{$(a^?^{\{n\}}) \cdot a^{\{n\}}$}}
 
 \begin{center}
 \begin{tikzpicture}
@@ -442,7 +442,7 @@
 \item \alert{R}egular \alert{e}xpression \alert{D}enial \alert{o}f \alert{S}ervice (ReDoS)\bigskip
 \item Evil regular expressions\medskip
 \begin{itemize}
-\item \bl{$(a?\{n\}) \cdot a\{n\}$}
+\item \bl{$(a^?^{\{n\}}) \cdot a^{\{n\}}$}
 \item \bl{$(a^+)^+$}
 \item \bl{$([a$\,-\,$z]^+)^*$}
 \item \bl{$(a + a \cdot a)^+$}
@@ -572,7 +572,7 @@
 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 \begin{frame}[c]
-\frametitle{\bl{$(a?\{n\}) \cdot a\{n\}$}}
+\frametitle{\bl{$(a^?^{\{n\}}) \cdot a^{\{n\}}$}}
 
 \begin{center}
 \begin{tikzpicture}
@@ -608,7 +608,7 @@
 \begin{frame}[c]
 \frametitle{A Problem}
 
-We represented the ``n-times'' \bl{$a\{n\}$} as a 
+We represented the ``n-times'' \bl{$a^{\{n\}}$} as a 
 sequence regular expression:
 
 \begin{center}
@@ -623,7 +623,7 @@
 \end{tabular}
 \end{center}
 
-This problem is aggravated with \bl{$a?$} being represented 
+This problem is aggravated with \bl{$a^?$} being represented 
 as \bl{$\epsilon + a$}.
 \end{frame}
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
@@ -638,7 +638,7 @@
 \begin{tabular}{rcl}
 \bl{$r$} & \bl{$::=$} & \bl{\ldots}\\
              & \bl{$\mid$} & \bl{$r^{\{n\}}$}\\
-             & \bl{$\mid$} & \bl{$r?$} 
+             & \bl{$\mid$} & \bl{$r^?$} 
 \end{tabular}
 \end{center}
 
@@ -649,7 +649,7 @@
 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 \begin{frame}[t]
-\frametitle{\bl{$(a?\{n\}) \cdot a\{n\}$}}
+\frametitle{\bl{$(a^?^{\{n\}}) \cdot a^{\{n\}}$}}
 
 \begin{center}
 \begin{tikzpicture}
@@ -707,7 +707,7 @@
 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 \begin{frame}[t]
-\frametitle{\bl{$(a?\{n\}) \cdot a\{n\}$}}
+\frametitle{\bl{$(a^?^{\{n\}}) \cdot a^{\{n\}}$}}
 
 \begin{center}
 \begin{tikzpicture}
@@ -911,7 +911,7 @@
 We can finally prove
 
 \begin{center}
-\bl{$matches(r, s)$}  if and only if  \bl{$s \in L(r)$} 
+\bl{$matches\,s\,r$}  if and only if  \bl{$s \in L(r)$} 
 \end{center}