Binary file slides/slides02.pdf has changed
--- a/slides/slides02.tex Sat Oct 03 00:44:58 2015 +0100
+++ b/slides/slides02.tex Sat Oct 03 23:30:48 2015 +0100
@@ -228,7 +228,7 @@
\begin{center}
\bl{$Der\,c\,A \dn \{ s \;|\; c\!::\!s \in A\}$ }
-\end{center}\bigskip\bigskip\bigskip3
+\end{center}\bigskip\bigskip\bigskip
For \bl{$A = \{\textit{foo}, \textit{bar}, \textit{frak}\}$} then
@@ -403,7 +403,7 @@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[c]
-\frametitle{\bl{$(a?\{n\}) \cdot a\{n\}$}}
+\frametitle{\bl{$(a^?^{\{n\}}) \cdot a^{\{n\}}$}}
\begin{center}
\begin{tikzpicture}
@@ -442,7 +442,7 @@
\item \alert{R}egular \alert{e}xpression \alert{D}enial \alert{o}f \alert{S}ervice (ReDoS)\bigskip
\item Evil regular expressions\medskip
\begin{itemize}
-\item \bl{$(a?\{n\}) \cdot a\{n\}$}
+\item \bl{$(a^?^{\{n\}}) \cdot a^{\{n\}}$}
\item \bl{$(a^+)^+$}
\item \bl{$([a$\,-\,$z]^+)^*$}
\item \bl{$(a + a \cdot a)^+$}
@@ -572,7 +572,7 @@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[c]
-\frametitle{\bl{$(a?\{n\}) \cdot a\{n\}$}}
+\frametitle{\bl{$(a^?^{\{n\}}) \cdot a^{\{n\}}$}}
\begin{center}
\begin{tikzpicture}
@@ -608,7 +608,7 @@
\begin{frame}[c]
\frametitle{A Problem}
-We represented the ``n-times'' \bl{$a\{n\}$} as a
+We represented the ``n-times'' \bl{$a^{\{n\}}$} as a
sequence regular expression:
\begin{center}
@@ -623,7 +623,7 @@
\end{tabular}
\end{center}
-This problem is aggravated with \bl{$a?$} being represented
+This problem is aggravated with \bl{$a^?$} being represented
as \bl{$\epsilon + a$}.
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@@ -638,7 +638,7 @@
\begin{tabular}{rcl}
\bl{$r$} & \bl{$::=$} & \bl{\ldots}\\
& \bl{$\mid$} & \bl{$r^{\{n\}}$}\\
- & \bl{$\mid$} & \bl{$r?$}
+ & \bl{$\mid$} & \bl{$r^?$}
\end{tabular}
\end{center}
@@ -649,7 +649,7 @@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[t]
-\frametitle{\bl{$(a?\{n\}) \cdot a\{n\}$}}
+\frametitle{\bl{$(a^?^{\{n\}}) \cdot a^{\{n\}}$}}
\begin{center}
\begin{tikzpicture}
@@ -707,7 +707,7 @@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[t]
-\frametitle{\bl{$(a?\{n\}) \cdot a\{n\}$}}
+\frametitle{\bl{$(a^?^{\{n\}}) \cdot a^{\{n\}}$}}
\begin{center}
\begin{tikzpicture}
@@ -911,7 +911,7 @@
We can finally prove
\begin{center}
-\bl{$matches(r, s)$} if and only if \bl{$s \in L(r)$}
+\bl{$matches\,s\,r$} if and only if \bl{$s \in L(r)$}
\end{center}