# HG changeset patch # User Christian Urban # Date 1446785681 0 # Node ID 9b71dead1219e61db2a18a47b60ab932f78db2d7 # Parent 50ce3667c19085f5f67df2f2b74457ddfad41089 updated diff -r 50ce3667c190 -r 9b71dead1219 progs/pow.scala --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/progs/pow.scala Fri Nov 06 04:54:41 2015 +0000 @@ -0,0 +1,20 @@ +def concat(A: Set[String], B: Set[String]) : Set[String] = + for (x <-A ; y <- B) yield x ++ y + +def pow(A: Set[String], n: Int) : Set[String] = n match { + case 0 => Set("") + case n => concat(A, pow(A, n- 1)) +} + +val A = Set("a", "b", "c", "d") +pow(A, 4).size // -> 256 + +val B = Set("a", "b", "c", "") +pow(B, 4).size // -> 121 + +val C = Set("a", "b", "") +pow(C, 2) +pow(C, 2).size // -> 7 + +pow(C, 3) +pow(C, 3).size // -> 15 diff -r 50ce3667c190 -r 9b71dead1219 slides/slides05.pdf Binary file slides/slides05.pdf has changed diff -r 50ce3667c190 -r 9b71dead1219 slides/slides06.pdf Binary file slides/slides06.pdf has changed diff -r 50ce3667c190 -r 9b71dead1219 slides/slides06.tex --- a/slides/slides06.tex Sat Oct 31 11:37:55 2015 +0000 +++ b/slides/slides06.tex Fri Nov 06 04:54:41 2015 +0000 @@ -3,21 +3,15 @@ \usepackage{../graphics} \usepackage{../langs} \usepackage{../data} -\usepackage{../grammar} -\hfuzz=220pt - -\pgfplotsset{compat=1.11} - -\newcommand{\bl}[1]{\textcolor{blue}{#1}} % beamer stuff \renewcommand{\slidecaption}{AFL 06, King's College London} +\newcommand{\bl}[1]{\textcolor{blue}{#1}} +%\newcommand{\dn}{\stackrel{\mbox{\scriptsize def}}{=}}% for definitions \begin{document} - - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}[t] \frametitle{% @@ -41,35 +35,98 @@ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}[c] -\frametitle{Regular Languages} -While regular expressions are very useful for lexing, there is -no regular expression that can recognise the language -\bl{$a^nb^n$}.\bigskip +\mbox{}\\[-18mm]\mbox{} -\begin{center} -\bl{$(((()()))())$} \;\;vs.\;\; \bl{$(((()()))()))$} -\end{center}\bigskip\bigskip - -\small -\noindent So we cannot find out with regular expressions -whether parentheses are matched or unmatched. +{\lstset{language=Scala}\fontsize{10}{12}\selectfont +\texttt{\lstinputlisting[xleftmargin=0mm]{../progs/pow.scala}}} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}[c] -\frametitle{Hierarchy of Languages} +\small +\mbox{}\\[5mm] +%\begin{textblock}{10}(3,5) +\begin{tikzpicture}[scale=1.5, + node distance=1cm, + every node/.style={minimum size=7mm}] +\node (r1) {\bl{$r_1$}}; +\node (r2) [right=of r1] {\bl{$r_2$}}; +\draw[->,line width=1mm] (r1) -- (r2) node[above,midway] {\bl{$der\,a$}}; +\node (r3) [right=of r2] {\bl{$r_3$}}; +\draw[->,line width=1mm] (r2) -- (r3) node[above,midway] {\bl{$der\,b$}}; +\node (r4) [right=of r3] {\bl{$r_4$}}; +\draw[->,line width=1mm] (r3) -- (r4) node[above,midway] {\bl{$der\,c$}}; +\draw (r4) node[anchor=west] {\;\raisebox{3mm}{\bl{$nullable$}}}; +\node (v4) [below=of r4] {\bl{$v_4$}}; +\draw[->,line width=1mm] (r4) -- (v4); +\node (v3) [left=of v4] {\bl{$v_3$}}; +\draw[->,line width=1mm] (v4) -- (v3) node[below,midway] {\bl{$inj\,c$}}; +\node (v2) [left=of v3] {\bl{$v_2$}}; +\draw[->,line width=1mm] (v3) -- (v2) node[below,midway] {\bl{$inj\,b$}}; +\node (v1) [left=of v2] {\bl{$v_1$}}; +\draw[->,line width=1mm] (v2) -- (v1) node[below,midway] {\bl{$inj\,a$}}; +\draw[->,line width=0.5mm] (r3) -- (v3); +\draw[->,line width=0.5mm] (r2) -- (v2); +\draw[->,line width=0.5mm] (r1) -- (v1); +\draw (r4) node[anchor=north west] {\;\raisebox{-8mm}{\bl{$mkeps$}}}; +\end{tikzpicture} +%\end{textblock} + +\begin{center} +\begin{tabular}{l@{\hspace{1mm}}c@{\hspace{1mm}}l} + \\[-10mm] + \bl{$inj\,(c)\,c\,Empty$} & \bl{$\dn$} & \bl{$Char\,c$}\\ + \bl{$inj\,(r_1 + r_2)\,c\,Left(v)$} & \bl{$\dn$} & \bl{$Left(inj\,r_1\,c\,v)$}\\ + \bl{$inj\,(r_1 + r_2)\,c\,Right(v)$} & \bl{$\dn$} & \bl{$Right(inj\,r_2\,c\,v)$}\\ + \bl{$inj\,(r_1 \cdot r_2)\,c\,Seq(v_1,v_2)$} & \bl{$\dn$} & \bl{$Seq(inj\,r_1\,c\,v_1,v_2)$}\\ + \bl{$inj\,(r_1 \cdot r_2)\,c\,Left(Seq(v_1,v_2))$} & \bl{$\dn$} & \bl{$Seq(inj\,r_1\,c\,v_1,v_2)$}\\ + \bl{$inj\,(r_1 \cdot r_2)\,c\,Right(v)$} & \bl{$\dn$} & \bl{$Seq(mkeps(r_1),inj\,r_2\,c\,v)$}\\ + \bl{$inj\,(r^*)\,c\,Seq(v,vs)$} & \bl{$\dn$} & \bl{$inj\,r\,c\,v\,::\,vs$}\\ +\end{tabular} +\end{center} + +\end{frame} +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + + + + +\newcommand{\qq}{\mbox{\texttt{"}}} +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +\begin{frame}[c] +\frametitle{CFGs} + +A \alert{context-free} grammar (CFG) \bl{$G$} consists of: + +\begin{itemize} +\item a finite set of nonterminal symbols (upper case) +\item a finite terminal symbols or tokens (lower case) +\item a start symbol (which must be a nonterminal) +\item a set of rules +\begin{center} +\bl{$A \rightarrow \text{rhs}_1 | \text{rhs}_2 | \ldots$} +\end{center} + +where \bl{rhs} are sequences involving terminals and nonterminals (can also be empty).\medskip\pause + +\end{itemize} + +\end{frame} +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +\mode{ +\begin{frame}[c] +\frametitle{\begin{tabular}{c}Hierarchy of Languages\end{tabular}} + +Recall that languages are sets of strings. \begin{center} \begin{tikzpicture} -[rect/.style={draw=black!50, - top color=white, - bottom color=black!20, - rectangle, - very thick, - rounded corners}] +[rect/.style={draw=black!50, top color=white,bottom color=black!20, rectangle, very thick, rounded corners}] \draw (0,0) node [rect, text depth=39mm, text width=68mm] {all languages}; \draw (0,-0.4) node [rect, text depth=28.5mm, text width=64mm] {decidable languages}; @@ -80,367 +137,262 @@ \end{center} -\end{frame} +\end{frame}} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +\mode{ \begin{frame}[c] -\frametitle{Grammars} +\frametitle{\begin{tabular}{c}Arithmetic Expressions\end{tabular}} + +A grammar for arithmetic expressions and numbers: -A (context-free) grammar \bl{$G$} consists of +\begin{center} +\bl{\begin{tabular}{lcl} +$E$ & $\rightarrow$ & $E \cdot + \cdot E \;|\;E \cdot * \cdot E \;|\;( \cdot E \cdot ) \;|\;N$ \\ +$N$ & $\rightarrow$ & $N \cdot N \;|\; 0 \;|\; 1 \;|\: \ldots \;|\; 9$ +\end{tabular}} +\end{center} -\begin{itemize} -\item a finite set of nonterminal symbols (upper case) -\item a finite terminal symbols or tokens (lower case) -\item a start symbol (which must be a nonterminal) -\item a set of rules +Unfortunately it is left-recursive (and ambiguous).\medskip\\ +A problem for \alert{recursive descent parsers} (e.g.~parser combinators). +\bigskip\pause + +\end{frame}} +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +\mode{ +\begin{frame}[t] +\frametitle{\begin{tabular}{c}Numbers\end{tabular}} + + + \begin{center} -\bl{$A \rightarrow \text{rhs}$} +\bl{\begin{tabular}{lcl} +$N$ & $\rightarrow$ & $N \cdot N \;|\; 0 \;|\; 1 \;|\; \ldots \;|\; 9$\\ +\end{tabular}} \end{center} -where \bl{rhs} are sequences involving terminals and nonterminals, -including the empty sequence \bl{$\epsilon$}.\medskip\pause +A non-left-recursive, non-ambiguous grammar for numbers: -We also allow rules \begin{center} -\bl{$A \rightarrow \text{rhs}_1 | \text{rhs}_2 | \ldots$} +\bl{\begin{tabular}{lcl} +$N$ & $\rightarrow$ & $0 \cdot N \;|\;1 \cdot N \;|\;\ldots\;|\; 0 \;|\; 1 \;|\; \ldots \;|\; 9$\\ +\end{tabular}} \end{center} -\end{itemize} + + +\end{frame}} +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +\mode{ +\begin{frame}[c] +\frametitle{\begin{tabular}{c}Operator Precedences\end{tabular}} + + +To disambiguate -\end{frame} +\begin{center} +\bl{\begin{tabular}{lcl} +$E$ & $\rightarrow$ & $E \cdot + \cdot E \;|\;E \cdot * \cdot E \;|\;( \cdot E \cdot ) \;|\;N$ \\ +\end{tabular}} +\end{center} + +Decide on how many precedence levels, say\medskip\\ +\hspace{5mm}highest for \bl{$()$}, medium for \bl{*}, lowest for \bl{+} + +\begin{center} +\bl{\begin{tabular}{lcl} +$E_{low}$ & $\rightarrow$ & $E_{med} \cdot + \cdot E_{low} \;|\; E_{med}$ \\ +$E_{med}$ & $\rightarrow$ & $E_{hi} \cdot * \cdot E_{med} \;|\; E_{hi}$\\ +$E_{hi}$ & $\rightarrow$ & $( \cdot E_{low} \cdot ) \;|\;N$ \\ +\end{tabular}} +\end{center}\pause + +\small What happens with \bl{$1 + 3 + 4$}? +\end{frame}} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +\mode{ \begin{frame}[c] -\frametitle{Palindromes} +\frametitle{\begin{tabular}{c}Removing Left-Recursion\end{tabular}} -A grammar for palindromes over the alphabet~\bl{$\{a,b\}$}: +The rule for numbers is directly left-recursive: \begin{center} \bl{\begin{tabular}{lcl} -$S$ & $\rightarrow$ & $\epsilon$ \\ -$S$ & $\rightarrow$ & $a\cdot S\cdot a$ \\ -$S$ & $\rightarrow$ & $b\cdot S\cdot b$ \\ +$N$ & $\rightarrow$ & $N \cdot N \;|\; 0 \;|\; 1\;\;\;\;(\ldots)$ +\end{tabular}} +\end{center} + +Translate + +\begin{center} +\begin{tabular}{ccc} +\bl{\begin{tabular}{lcl} +$N$ & $\rightarrow$ & $N \cdot \alpha$\\ + & $\;|\;$ & $\beta$\\ + \\ +\end{tabular}} +& {\Large$\Rightarrow$} & +\bl{\begin{tabular}{lcl} +$N$ & $\rightarrow$ & $\beta \cdot N'$\\ +$N'$ & $\rightarrow$ & $\alpha \cdot N'$\\ + & $\;|\;$ & $\epsilon$ \end{tabular}} +\end{tabular} \end{center}\pause +Which means + +\begin{center} +\bl{\begin{tabular}{lcl} +$N$ & $\rightarrow$ & $0 \cdot N' \;|\; 1 \cdot N'$\\ +$N'$ & $\rightarrow$ & $N \cdot N' \;|\; \epsilon$\\ +\end{tabular}} +\end{center} + + +\end{frame}} +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +\mode{ +\begin{frame}[c] +\frametitle{\begin{tabular}{c}Chomsky Normal Form\end{tabular}} + +All rules must be of the form + +\begin{center} +\bl{$A \rightarrow a$} +\end{center} + or \begin{center} -\bl{\begin{tabular}{lcl} -$S$ & $\rightarrow$ & $\epsilon \;|\; a\cdot S\cdot a \;|\;b\cdot S\cdot b$ \\ -\end{tabular}} -\end{center}\pause\bigskip - -\small -Can you find the grammar rules for matched parentheses? - -\end{frame} -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +\bl{$A \rightarrow B\cdot C$} +\end{center} -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -\begin{frame}[c] -\frametitle{Arithmetic Expressions} +No rule can contain \bl{$\epsilon$}. -\begin{center} -\bl{\begin{tabular}{lcl} -$E$ & $\rightarrow$ & $num\_token$ \\ -$E$ & $\rightarrow$ & $E \cdot + \cdot E$ \\ -$E$ & $\rightarrow$ & $E \cdot - \cdot E$ \\ -$E$ & $\rightarrow$ & $E \cdot * \cdot E$ \\ -$E$ & $\rightarrow$ & $( \cdot E \cdot )$ -\end{tabular}} -\end{center}\pause - -\bl{\texttt{1 + 2 * 3 + 4}} - -\end{frame} +\end{frame}} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +\mode{ \begin{frame}[c] -\frametitle{A CFG Derivation} +\frametitle{\begin{tabular}{c}$\epsilon$-Removal\end{tabular}} \begin{enumerate} -\item Begin with a string containing only the start symbol, say \bl{$S$}\bigskip -\item Replace any nonterminal \bl{$X$} in the string by the -right-hand side of some production \bl{$X \rightarrow \text{rhs}$}\bigskip -\item Repeat 2 until there are no nonterminals +\item If \bl{$A\rightarrow \alpha \cdot B \cdot \beta$} and \bl{$B \rightarrow \epsilon$} are in the grammar, +then add \bl{$A\rightarrow \alpha \cdot \beta$} (iterate if necessary). +\item Throw out all \bl{$B \rightarrow \epsilon$}. \end{enumerate} -\begin{center} -\bl{$S \rightarrow \ldots \rightarrow \ldots \rightarrow \ldots \rightarrow \ldots $} -\end{center} - -\end{frame} -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -\begin{frame}[c] -\frametitle{Example Derivation} - +\small \begin{center} -\bl{\begin{tabular}{lcl} -$S$ & $\rightarrow$ & $\epsilon \;|\; a\cdot S\cdot a \;|\;b\cdot S\cdot b$ \\ +\begin{tabular}{ccc} +\bl{\begin{tabular}{l@{\hspace{1mm}}c@{\hspace{1mm}}l} +$N$ & $\rightarrow$ & $0 \cdot N' \;|\; 1\cdot N'$\\ +$N'$ & $\rightarrow$ & $N \cdot N'\;|\;\epsilon$\\ +\\ +\\ +\\ +\\ +\\ +\end{tabular}} & +\bl{\begin{tabular}{l@{\hspace{1mm}}c@{\hspace{1mm}}l} +\\ +$N$ & $\rightarrow$ & $0 \cdot N' \;|\; 1\cdot N'\;|\;0\;|\;1$\\ +$N'$ & $\rightarrow$ & $N \cdot N'\;|\;N\;|\;\epsilon$\\ +\\ +$N$ & $\rightarrow$ & $0 \cdot N' \;|\; 1\cdot N'\;|\;0\;|\;1$\\ +$N'$ & $\rightarrow$ & $N \cdot N'\;|\;N$\\ \end{tabular}} -\end{center}\bigskip - -\begin{center} -\begin{tabular}{lcl} -\bl{$S$} & \bl{$\rightarrow$} & \bl{$aSa$}\\ - & \bl{$\rightarrow$} & \bl{$abSba$}\\ - & \bl{$\rightarrow$} & \bl{$abaSaba$}\\ - & \bl{$\rightarrow$} & \bl{$abaaba$}\\ - - \end{tabular} \end{center} -\end{frame} +\pause\normalsize +\begin{center} +\bl{\begin{tabular}{l@{\hspace{1mm}}c@{\hspace{1mm}}l} +$N$ & $\rightarrow$ & $0 \cdot N\;|\; 1\cdot N\;|\;0\;|\;1$\\ +\end{tabular}} + +\end{center} +\end{frame}} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + + %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +\mode{ \begin{frame}[c] -\frametitle{Example Derivation} +\frametitle{\begin{tabular}{c}CYK Algorithm\end{tabular}} -\begin{center} -\bl{\begin{tabular}{lcl} -$E$ & $\rightarrow$ & $num\_token$ \\ -$E$ & $\rightarrow$ & $E \cdot + \cdot E$ \\ -$E$ & $\rightarrow$ & $E \cdot - \cdot E$ \\ -$E$ & $\rightarrow$ & $E \cdot * \cdot E$ \\ -$E$ & $\rightarrow$ & $( \cdot E \cdot )$ -\end{tabular}} -\end{center}\bigskip - +If grammar is in Chomsky normalform \ldots \begin{center} -\begin{tabular}{@{}c@{}c@{}} -\begin{tabular}{l@{\hspace{1mm}}l@{\hspace{1mm}}l} -\bl{$E$} & \bl{$\rightarrow$} & \bl{$E*E$}\\ - & \bl{$\rightarrow$} & \bl{$E+E*E$}\\ - & \bl{$\rightarrow$} & \bl{$E+E*E+E$}\\ - & \bl{$\rightarrow^+$} & \bl{$1+2*3+4$}\\ -\end{tabular} &\pause -\begin{tabular}{l@{\hspace{1mm}}l@{\hspace{1mm}}l} -\bl{$E$} & \bl{$\rightarrow$} & \bl{$E+E$}\\ - & \bl{$\rightarrow$} & \bl{$E+E+E$}\\ - & \bl{$\rightarrow$} & \bl{$E+E*E+E$}\\ - & \bl{$\rightarrow^+$} & \bl{$1+2*3+4$}\\ -\end{tabular} -\end{tabular} -\end{center} - -\end{frame} -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -\begin{frame}[c] -\frametitle{Language of a CFG} - -Let \bl{$G$} be a context-free grammar with start symbol \bl{$S$}. -Then the language \bl{$L(G)$} is: - -\begin{center} -\bl{$\{c_1\ldots c_n \;|\; \forall i.\; c_i \in T \wedge S \rightarrow^* c_1\ldots c_n \}$} -\end{center}\pause - -\begin{itemize} -\item Terminals, because there are no rules for replacing them. -\item Once generated, terminals are ``permanent''. -\item Terminals ought to be tokens of the language\\ -(but can also be strings). -\end{itemize} - -\end{frame} -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -\begin{frame}[c] -\frametitle{Parse Trees} - -\begin{center} -\bl{\begin{tabular}{lcl} -$E$ & $\rightarrow$ & $F \;|\; F \cdot * \cdot F$\\ -$F$ & $\rightarrow$ & $T \;|\; T \cdot + \cdot T \;|\; T \cdot - \cdot T$\\ -$T$ & $\rightarrow$ & $num\_token \;|\; ( \cdot E \cdot )$\\ +\bl{\begin{tabular}{@ {}lcl@ {}} +$S$ & $\rightarrow$ & $N\cdot P$ \\ +$P$ & $\rightarrow$ & $V\cdot N$ \\ +$N$ & $\rightarrow$ & $N\cdot N$ \\ +$N$ & $\rightarrow$ & $\texttt{students} \;|\; \texttt{Jeff} \;|\; \texttt{geometry} \;|\; \texttt{trains} $ \\ +$V$ & $\rightarrow$ & $\texttt{trains}$ \end{tabular}} \end{center} -\begin{center} -\begin{tikzpicture}[level distance=8mm, blue] - \node {$E$} - child {node {$F$} - child {node {$T$} - child {node {(\,$E$\,)} - child {node{$F$ *{} $F$} - child {node {$T$} child {node {2}}} - child {node {$T$} child {node {3}}} - } - } - } - child {node {+}} - child {node {$T$} - child {node {(\,$E$\,)} - child {node {$F$} - child {node {$T$ +{} $T$} - child {node {3}} - child {node {4}} - } - }} - }}; -\end{tikzpicture} -\end{center} +\bl{\texttt{Jeff trains geometry students}} + +\end{frame}} +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +\mode{ +\begin{frame}[c] +\frametitle{\begin{tabular}{c}CYK Algorithm\end{tabular}} -\begin{textblock}{5}(1, 6.5) -\bl{\texttt{(2*3)+(3+4)}} -\end{textblock} -\end{frame} -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +\begin{itemize} +\item fastest possible algorithm for recognition problem +\item runtime is \bl{$O(n^3)$}\bigskip +\item grammars need to be transferred into CNF +\end{itemize} + +\end{frame}} +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +\mode{ \begin{frame}[c] -\frametitle{Arithmetic Expressions} \begin{center} -\bl{\begin{tabular}{lcl} -$E$ & $\rightarrow$ & $num\_token$ \\ -$E$ & $\rightarrow$ & $E \cdot + \cdot E$ \\ -$E$ & $\rightarrow$ & $E \cdot - \cdot E$ \\ -$E$ & $\rightarrow$ & $E \cdot * \cdot E$ \\ -$E$ & $\rightarrow$ & $( \cdot E \cdot )$ -\end{tabular}} -\end{center}\pause\bigskip - -A CFG is \alert{left-recursive} if it has a nonterminal \bl{$E$} such -that \bl{$E \rightarrow^+ E\cdot \ldots$} - -\end{frame} -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -\begin{frame}[c] -\frametitle{Ambiguous Grammars} - -A grammar is \alert{ambiguous} if there is a string that has -at least two different parse trees. - - -\begin{center} -\bl{\begin{tabular}{lcl} -$E$ & $\rightarrow$ & $num\_token$ \\ -$E$ & $\rightarrow$ & $E \cdot + \cdot E$ \\ -$E$ & $\rightarrow$ & $E \cdot - \cdot E$ \\ -$E$ & $\rightarrow$ & $E \cdot * \cdot E$ \\ -$E$ & $\rightarrow$ & $( \cdot E \cdot )$ +\bl{\begin{tabular}{@{}lcl@{}} +\textit{Stmt} & $\rightarrow$ & $\texttt{skip}$\\ + & $|$ & \textit{Id}\;\texttt{:=}\;\textit{AExp}\\ + & $|$ & \texttt{if}\; \textit{BExp} \;\texttt{then}\; \textit{Block} \;\texttt{else}\; \textit{Block}\\ + & $|$ & \texttt{while}\; \textit{BExp} \;\texttt{do}\; \textit{Block}\\ + & $|$ & \texttt{read}\;\textit{Id}\\ + & $|$ & \texttt{write}\;\textit{Id}\\ + & $|$ & \texttt{write}\;\textit{String}\medskip\\ +\textit{Stmts} & $\rightarrow$ & \textit{Stmt} \;\texttt{;}\; \textit{Stmts}\\ + & $|$ & \textit{Stmt}\medskip\\ +\textit{Block} & $\rightarrow$ & \texttt{\{}\,\textit{Stmts}\,\texttt{\}}\\ + & $|$ & \textit{Stmt}\medskip\\ +\textit{AExp} & $\rightarrow$ & \ldots\\ +\textit{BExp} & $\rightarrow$ & \ldots\\ \end{tabular}} \end{center} - -\bl{\texttt{1 + 2 * 3 + 4}} - -\end{frame} -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -\begin{frame}[c] -\frametitle{Dangling Else} - -Another ambiguous grammar:\bigskip - -\begin{center} -\bl{\begin{tabular}{lcl} -$E$ & $\rightarrow$ & if $E$ then $E$\\ - & $|$ & if $E$ then $E$ else $E$ \\ - & $|$ & \ldots -\end{tabular}} -\end{center}\bigskip - -\bl{\texttt{if a then if x then y else c}} - -\end{frame} -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -\begin{frame}[c] -\frametitle{Parser Combinators} - -Parser combinators: \bigskip - -\begin{minipage}{1.1\textwidth} -\begin{center} -\mbox{}\hspace{-12mm}\mbox{}$\underbrace{\text{list of tokens}}_{\text{input}}$ \bl{$\Rightarrow$} -$\underbrace{\text{set of (parsed input, unparsed input)}}_{\text{output}}$ -\end{center} -\end{minipage}\bigskip - -\begin{itemize} -\item atomic parsers -\item sequencing -\item alternative -\item semantic action -\end{itemize} - -\end{frame} -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -\begin{frame}[c] - -Atomic parsers, for example, number tokens - -\begin{center} -\bl{$\texttt{Num(123)}::rest \;\Rightarrow\; \{(\texttt{Num(123)}, rest)\}$} -\end{center}\bigskip - -\begin{itemize} -\item you consume one or more token from the\\ - input (stream) -\item also works for characters and strings -\end{itemize} -\end{frame} -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -\begin{frame}[c] - -Alternative parser (code \bl{$p\;||\;q$})\bigskip - -\begin{itemize} -\item apply \bl{$p$} and also \bl{$q$}; then combine - the outputs -\end{itemize} - -\begin{center} -\large \bl{$p(\text{input}) \cup q(\text{input})$} -\end{center} - -\end{frame} +\end{frame}} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \mode{ \begin{frame}[c] -Sequence parser (code \bl{$p\sim q$})\bigskip - -\begin{itemize} -\item apply first \bl{$p$} producing a set of pairs -\item then apply \bl{$q$} to the unparsed parts -\item then combine the results:\medskip -\begin{center} -((output$_1$, output$_2$), unparsed part) -\end{center} -\end{itemize} - -\begin{center} -\begin{tabular}{l} -\large \bl{$\{((o_1, o_2), u_2) \;|\;$}\\[2mm] -\large\mbox{}\hspace{15mm} \bl{$(o_1, u_1) \in p(\text{input}) \wedge$}\\[2mm] -\large\mbox{}\hspace{15mm} \bl{$(o_2, u_2) \in q(u_1)\}$} -\end{tabular} -\end{center} - +\mbox{\lstinputlisting[language=while]{../progs/fib.while}} \end{frame}} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @@ -449,227 +401,7 @@ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \mode{ \begin{frame}[c] - -Function parser (code \bl{$p \Rightarrow f$})\bigskip - -\begin{itemize} -\item apply \bl{$p$} producing a set of pairs -\item then apply the function \bl{$f$} to each first component -\end{itemize} - -\begin{center} -\begin{tabular}{l} -\large \bl{$\{(f(o_1), u_1) \;|\; (o_1, u_1) \in p(\text{input})\}$} -\end{tabular} -\end{center}\bigskip\bigskip\pause - -\bl{$f$} is the semantic action (``what to do with the parsed input'') - -\end{frame}} -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - - -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -\mode{ -\begin{frame}[c] -\frametitle{\begin{tabular}{c}Semantic Actions\end{tabular}} - -Addition - -\begin{center} -\bl{$T \sim + \sim E \Rightarrow \underbrace{f((x,y), z) \Rightarrow x + z}_{\text{semantic action}}$} -\end{center}\pause - -Multiplication - -\begin{center} -\bl{$F \sim * \sim T \Rightarrow f((x,y), z) \Rightarrow x * z$} -\end{center}\pause - -Parenthesis - -\begin{center} -\bl{$\text{(} \sim E \sim \text{)} \Rightarrow f((x,y), z) \Rightarrow y$} -\end{center} - -\end{frame}} -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -\mode{ -\begin{frame}[c] -\frametitle{\begin{tabular}{c}Types of Parsers\end{tabular}} - -\begin{itemize} -\item {\bf Sequencing}: if \bl{$p$} returns results of type \bl{$T$}, and \bl{$q$} results of type \bl{$S$}, -then \bl{$p \sim q$} returns results of type - -\begin{center} -\bl{$T \times S$} -\end{center}\pause - -\item {\bf Alternative}: if \bl{$p$} returns results of type \bl{$T$} then \bl{$q$} \alert{must} also have results of type \bl{$T$}, -and \bl{$p \;||\; q$} returns results of type - -\begin{center} -\bl{$T$} -\end{center}\pause - -\item {\bf Semantic Action}: if \bl{$p$} returns results of type \bl{$T$} and \bl{$f$} is a function from -\bl{$T$} to \bl{$S$}, then -\bl{$p \Rightarrow f$} returns results of type - -\begin{center} -\bl{$S$} -\end{center} - -\end{itemize} - -\end{frame}} -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -\begin{frame}[c] -\frametitle{Input Types of Parsers} - -\begin{itemize} -\item input: \alert{token list} -\item output: set of (output\_type, \alert{token list}) -\end{itemize}\bigskip\pause - -actually it can be any input type as long as it is a kind of -sequence (for example a string) - -\end{frame} -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - - -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -\begin{frame}[c] -\frametitle{Scannerless Parsers} - -\begin{itemize} -\item input: \alert{string} -\item output: set of (output\_type, \alert{string}) -\end{itemize}\bigskip - -but lexers are better when whitespaces or comments need to be -filtered out; then input is a sequence of tokens - -\end{frame} -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -\begin{frame}[c] -\frametitle{Successful Parses} - -\begin{itemize} -\item input: string -\item output: \alert{set of} (output\_type, string) -\end{itemize}\bigskip - -a parse is successful whenever the input has been fully -``consumed'' (that is the second component is empty) - -\end{frame} -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -\begin{frame}[c] -\frametitle{Abstract Parser Class} - -\small -\lstinputlisting[language=Scala,xleftmargin=1mm]{../progs/app7.scala} -\end{frame} -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -\begin{frame}[c] - -\small -\fontsize{10}{12}\selectfont -\lstinputlisting[language=Scala,xleftmargin=1mm]{../progs/app8.scala} -\end{frame} -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - - -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -\begin{frame}[c] -\frametitle{Two Grammars} - -Which languages are recognised by the following two grammars? - -\begin{center} -\bl{\begin{tabular}{lcl} -$S$ & $\rightarrow$ & $1 \cdot S \cdot S$\\ - & $|$ & $\epsilon$ -\end{tabular}} -\end{center}\bigskip - -\begin{center} -\bl{\begin{tabular}{lcl} -$U$ & $\rightarrow$ & $1 \cdot U$\\ - & $|$ & $\epsilon$ -\end{tabular}} -\end{center} - -\end{frame} -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -\begin{frame}[t] -\frametitle{Ambiguous Grammars} - -\begin{center} -\begin{tikzpicture} -\begin{axis}[xlabel={\pcode{1}s},ylabel={time in secs}, - enlargelimits=false, - xtick={0,100,...,1000}, - xmax=1050, - ymax=33, - ytick={0,5,...,30}, - scaled ticks=false, - axis lines=left, - width=11cm, - height=7cm, - legend entries={unambiguous,ambiguous}, - legend pos=north east, - legend cell align=left, - x tick label style={font=\small,/pgf/number format/1000 sep={}}] -\addplot[blue,mark=*, mark options={fill=white}] - table {s-grammar1.data}; -\only<2>{ - \addplot[red,mark=triangle*, mark options={fill=white}] - table {s-grammar2.data};} -\end{axis} -\end{tikzpicture} -\end{center} - -\end{frame} -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -\begin{frame} -\frametitle{While-Language} -\mbox{}\\[-23mm]\mbox{} - -\bl{\begin{plstx}[rhs style=,one per line] : \meta{Stmt} ::= skip - | \meta{Id} := \meta{AExp} - | if \meta{BExp} then \meta{Block} else \meta{Block} - | while \meta{BExp} do \meta{Block}\\ -: \meta{Stmts} ::= \meta{Stmt} ; \meta{Stmts} - | \meta{Stmt}\\ -: \meta{Block} ::= \{ \meta{Stmts} \} - | \meta{Stmt}\\ -: \meta{AExp} ::= \ldots\\ -: \meta{BExp} ::= \ldots\\ \end{plstx}} - -\end{frame} -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -\begin{frame}[c] -\frametitle{An Interpreter} +\frametitle{\begin{tabular}{c}An Interpreter\end{tabular}} \begin{center} \bl{\begin{tabular}{l} @@ -684,12 +416,103 @@ \begin{itemize} \item the interpreter has to record the value of \bl{$x$} before assigning a value to \bl{$y$}\pause -\item \bl{\texttt{eval(stmt, env)}} +\item \bl{\text{eval}(stmt, env)} \end{itemize} + +\end{frame}} +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +\mode{ +\begin{frame}[c] +\frametitle{\begin{tabular}{c}Interpreter\end{tabular}} + +\begin{center} +\bl{\begin{tabular}{@{}lcl@{}} +$\text{eval}(n, E)$ & $\dn$ & $n$\\ +$\text{eval}(x, E)$ & $\dn$ & $E(x)$ \;\;\;\textcolor{black}{lookup \bl{$x$} in \bl{$E$}}\\ +$\text{eval}(a_1 + a_2, E)$ & $\dn$ & $\text{eval}(a_1, E) + \text{eval}(a_2, E)$\\ +$\text{eval}(a_1 - a_2, E)$ & $\dn$ & $\text{eval}(a_1, E) - \text{eval}(a_2, E)$\\ +$\text{eval}(a_1 * a_2, E)$ & $\dn$ & $\text{eval}(a_1, E) * \text{eval}(a_2, E)$\bigskip\\ +$\text{eval}(a_1 = a_2, E)$ & $\dn$ & $\text{eval}(a_1, E) = \text{eval}(a_2, E)$\\ +$\text{eval}(a_1\,!\!= a_2, E)$ & $\dn$ & $\neg(\text{eval}(a_1, E) = \text{eval}(a_2, E))$\\ +$\text{eval}(a_1 < a_2, E)$ & $\dn$ & $\text{eval}(a_1, E) < \text{eval}(a_2, E)$\ +\end{tabular}} +\end{center} + +\end{frame}} +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +\mode{ +\begin{frame}[c] +\frametitle{\begin{tabular}{c}Interpreter (2)\end{tabular}} + +\begin{center} +\bl{\begin{tabular}{@{}lcl@{}} +$\text{eval}(\text{skip}, E)$ & $\dn$ & $E$\\ +$\text{eval}(x:=a, E)$ & $\dn$ & \bl{$E(x \mapsto \text{eval}(a, E))$}\\ +\multicolumn{3}{@{}l@{}}{$\text{eval}(\text{if}\;b\;\text{then}\;cs_1\;\text{else}\;cs_2 , E) \dn$}\\ +\multicolumn{3}{@{}l@{}}{\hspace{2cm}$\text{if}\;\text{eval}(b,E)\;\text{then}\; +\text{eval}(cs_1,E)$}\\ +\multicolumn{3}{@{}l@{}}{\hspace{2cm}$\phantom{\text{if}\;\text{eval}(b,E)\;}\text{else}\;\text{eval}(cs_2,E)$}\\ +\multicolumn{3}{@{}l@{}}{$\text{eval}(\text{while}\;b\;\text{do}\;cs, E) \dn$}\\ +\multicolumn{3}{@{}l@{}}{\hspace{2cm}$\text{if}\;\text{eval}(b,E)$}\\ +\multicolumn{3}{@{}l@{}}{\hspace{2cm}$\text{then}\; +\text{eval}(\text{while}\;b\;\text{do}\;cs, \text{eval}(cs,E))$}\\ +\multicolumn{3}{@{}l@{}}{\hspace{2cm}$\text{else}\; E$}\\ +$\text{eval}(\text{write}\; x, E)$ & $\dn$ & $\{\;\text{println}(E(x))\; ;\;E\;\}$\\ +\end{tabular}} +\end{center} + +\end{frame}} +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +\begin{frame}[c] +\frametitle{\begin{tabular}{c}Test Program\end{tabular}} + +\mbox{}\\[-18mm]\mbox{} + +{\lstset{language=While}%%\fontsize{10}{12}\selectfont +\texttt{\lstinputlisting{../progs/loops.while}}} + \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +\mode{ +\begin{frame}[t] +\frametitle{\begin{tabular}{c}Interpreted Code\end{tabular}} + +\begin{center} +\begin{tikzpicture} +\begin{axis}[axis x line=bottom, axis y line=left, xlabel=n, ylabel=secs, legend style=small] +\addplot+[smooth] file {interpreted.data}; +\end{axis} +\end{tikzpicture} +\end{center} + +\end{frame}} +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +\mode{ +\begin{frame}[c] +\frametitle{\begin{tabular}{c}Java Virtual Machine\end{tabular}} + +\begin{itemize} +\item introduced in 1995 +\item is a stack-based VM (like Postscript, CLR of .Net) +\item contains a JIT compiler +\item many languages take advantage of JVM's infrastructure (JRE) +\item is garbage collected $\Rightarrow$ no buffer overflows +\item some languages compile to the JVM: Scala, Clojure\ldots +\end{itemize} + +\end{frame}} +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + \end{document}