# HG changeset patch # User Christian Urban # Date 1605491364 0 # Node ID 526e10d97435e42a81285d2be25cd441fb79dba4 # Parent 387240957c3d5c129797bdb3346aeb979ad91d8a updated diff -r 387240957c3d -r 526e10d97435 hws/hw09.pdf Binary file hws/hw09.pdf has changed diff -r 387240957c3d -r 526e10d97435 hws/hw09.tex --- a/hws/hw09.tex Sun Nov 15 00:33:16 2020 +0000 +++ b/hws/hw09.tex Mon Nov 16 01:49:24 2020 +0000 @@ -64,7 +64,14 @@ syntax tree? Give some simple examples for each of them. +\item Give a description of how the Brzozowski matcher works. + The description should be coherent and logical. +\item Give a description of how a compiler for the While-language can + be implemented. You should assume you are producing code for the JVM. + The description should be coherent and logical. + + \item \POSTSCRIPT % \item It is true (I confirmed it) that diff -r 387240957c3d -r 526e10d97435 progs/parser-combinators/c.sc --- a/progs/parser-combinators/c.sc Sun Nov 15 00:33:16 2020 +0000 +++ b/progs/parser-combinators/c.sc Mon Nov 16 01:49:24 2020 +0000 @@ -1,249 +1,229 @@ -// A parser and interpreter for the While language -// +// Parser Combinators: Simple Version +//==================================== +// +// Call with +// +// amm comb1.sc -import scala.language.implicitConversions -import scala.language.reflectiveCalls - - -// more convenience for the semantic actions later on -case class ~[+A, +B](_1: A, _2: B) + +// Note, in the lectures I did not show the implicit type constraint +// I : IsSeq, which means that the input type 'I' needs to be +// a sequence. type IsSeq[A] = A => Seq[_] -abstract class Parser[I : IsSeq, T] { - def parse(ts: I): Set[(T, I)] - - def parse_all(ts: I) : Set[T] = - for ((head, tail) <- parse(ts); if tail.isEmpty) yield head -} +abstract class Parser[I : IsSeq, T]{ + def parse(in: I): Set[(T, I)] -class SeqParser[I : IsSeq, T, S](p: => Parser[I, T], q: => Parser[I, S]) extends Parser[I, ~[T, S]] { - def parse(sb: I) = - for ((head1, tail1) <- p.parse(sb); - (head2, tail2) <- q.parse(tail1)) yield (new ~(head1, head2), tail2) -} - -class AltParser[I : IsSeq, T](p: => Parser[I, T], q: => Parser[I, T]) extends Parser[I, T] { - def parse(sb: I) = p.parse(sb) ++ q.parse(sb) + def parse_all(in: I) : Set[T] = + for ((hd, tl) <- parse(in); + if tl.isEmpty) yield hd } -class MapParser[I : IsSeq, T, S](p: => Parser[I, T], f: T => S) extends Parser[I, S] { - def parse(sb: I) = - for ((head, tail) <- p.parse(sb)) yield (f(head), tail) +// parser combinators + +// alternative parser +class AltParser[I : IsSeq, T](p: => Parser[I, T], + q: => Parser[I, T]) extends Parser[I, T] { + def parse(in: I) = p.parse(in) ++ q.parse(in) } -case class StrParser(s: String) extends Parser[String, String] { - def parse(sb: String) = { - val (prefix, suffix) = sb.splitAt(s.length) - if (prefix == s) Set((prefix, suffix)) else Set() - } +// sequence parser +class SeqParser[I : IsSeq, T, S](p: => Parser[I, T], + q: => Parser[I, S]) extends Parser[I, (T, S)] { + def parse(in: I) = + for ((hd1, tl1) <- p.parse(in); + (hd2, tl2) <- q.parse(tl1)) yield ((hd1, hd2), tl2) } -case object NumParser extends Parser[String, Int] { - val reg = "[0-9]+".r - def parse(sb: String) = reg.findPrefixOf(sb) match { - case None => Set() - case Some(s) => { - val (head, tail) = sb.splitAt(s.length) - Set((head.toInt, tail)) - } - } +// map parser +class MapParser[I : IsSeq, T, S](p: => Parser[I, T], + f: T => S) extends Parser[I, S] { + def parse(in: I) = for ((hd, tl) <- p.parse(in)) yield (f(hd), tl) } -implicit def parser_interpolation(sc: StringContext) = new { - def p(args: Any*) = StrParser(sc.s(args:_*)) + +// an example of an atomic parser for characters +case class CharParser(c: Char) extends Parser[String, Char] { + def parse(in: String) = + if (in != "" && in.head == c) Set((c, in.tail)) else Set() } -// this string interpolation allows us to write -// things like the following for a StrParser -// -// p"<_some_string_>" -// -// instead of StrParser(<_some_string_>) - - -implicit def ParserOps[I : IsSeq, T](p: Parser[I, T]) = new { - def ||(q : => Parser[I, T]) = new AltParser[I, T](p, q) - def ~[S](q : => Parser[I, S]) = new SeqParser[I, T, S](p, q) - def map[S](f: => T => S) = new MapParser[I, T, S](p, f) -} - -// these implicits allow us to use infic notation for -// sequences and alternatives; we also can write map -// for a parser - -// the abstract syntax trees for the WHILE language -abstract class Stmt -abstract class AExp -abstract class BExp - -type Block = List[Stmt] - -case object Skip extends Stmt -case class If(a: BExp, bl1: Block, bl2: Block) extends Stmt -case class While(b: BExp, bl: Block) extends Stmt -case class Assign(s: String, a: AExp) extends Stmt -case class Write(s: String) extends Stmt - +// an atomic parser for parsing strings according to a regex +import scala.util.matching.Regex -case class Var(s: String) extends AExp -case class Num(i: Int) extends AExp -case class Aop(o: String, a1: AExp, a2: AExp) extends AExp - -case object True extends BExp -case object False extends BExp -case class Bop(o: String, a1: AExp, a2: AExp) extends BExp -case class And(b1: BExp, b2: BExp) extends BExp -case class Or(b1: BExp, b2: BExp) extends BExp - -case object IdParser extends Parser[String, String] { - val reg = "[a-z][a-z,0-9]*".r - def parse(sb: String) = reg.findPrefixOf(sb) match { +case class RegexParser(reg: Regex) extends Parser[String, String] { + def parse(in: String) = reg.findPrefixMatchOf(in) match { case None => Set() - case Some(s) => Set(sb.splitAt(s.length)) + case Some(m) => Set((m.matched, m.after.toString)) } } -// arithmetic expressions -lazy val AExp: Parser[String, AExp] = - (Te ~ p"+" ~ AExp).map[AExp]{ case x ~ _ ~ z => Aop("+", x, z) } || - (Te ~ p"-" ~ AExp).map[AExp]{ case x ~ _ ~ z => Aop("-", x, z) } || Te -lazy val Te: Parser[String, AExp] = - (Fa ~ p"*" ~ Te).map[AExp]{ case x ~ _ ~ z => Aop("*", x, z) } || - (Fa ~ p"/" ~ Te).map[AExp]{ case x ~ _ ~ z => Aop("/", x, z) } || Fa -lazy val Fa: Parser[String, AExp] = - (p"(" ~ AExp ~ p")").map{ case _ ~ y ~ _ => y } || - IdParser.map(Var) || - NumParser.map(Num) +// atomic parsers for numbers and "verbatim" strings +val NumParser = RegexParser("[0-9]+".r) +def StrParser(s: String) = RegexParser(Regex.quote(s).r) + -// boolean expressions with some simple nesting -lazy val BExp: Parser[String, BExp] = - (AExp ~ p"==" ~ AExp).map[BExp]{ case x ~ _ ~ z => Bop("==", x, z) } || - (AExp ~ p"!=" ~ AExp).map[BExp]{ case x ~ _ ~ z => Bop("!=", x, z) } || - (AExp ~ p"<" ~ AExp).map[BExp]{ case x ~ _ ~ z => Bop("<", x, z) } || - (AExp ~ p">" ~ AExp).map[BExp]{ case x ~ _ ~ z => Bop(">", x, z) } || - (p"(" ~ BExp ~ p")" ~ p"&&" ~ BExp).map[BExp]{ case _ ~ y ~ _ ~ _ ~ v => And(y, v) } || - (p"(" ~ BExp ~ p")" ~ p"||" ~ BExp).map[BExp]{ case _ ~ y ~ _ ~ _ ~ v => Or(y, v) } || - (p"true".map[BExp]{ _ => True }) || - (p"false".map[BExp]{ _ => False }) || - (p"(" ~ BExp ~ p")").map[BExp]{ case _ ~ x ~ _ => x } -// statement / statements -lazy val Stmt: Parser[String, Stmt] = - ((p"skip".map[Stmt]{_ => Skip }) || - (IdParser ~ p":=" ~ AExp).map[Stmt]{ case x ~ _ ~ z => Assign(x, z) } || - (p"write(" ~ IdParser ~ p")").map[Stmt]{ case _ ~ y ~ _ => Write(y) } || - (p"if" ~ BExp ~ p"then" ~ Block ~ p"else" ~ Block) - .map[Stmt]{ case _ ~ y ~ _ ~ u ~ _ ~ w => If(y, u, w) } || - (p"while" ~ BExp ~ p"do" ~ Block).map[Stmt]{ case _ ~ y ~ _ ~ w => While(y, w) }) - -lazy val Stmts: Parser[String, Block] = - (Stmt ~ p";" ~ Stmts).map[Block]{ case x ~ _ ~ z => x :: z } || - (Stmt.map[Block]{ s => List(s) }) +// NumParserInt transforms a "string integer" into a propper Int +// (needs "new" because MapParser is not a case class) -// blocks (enclosed in curly braces) -lazy val Block: Parser[String, Block] = - ((p"{" ~ Stmts ~ p"}").map{ case _ ~ y ~ _ => y } || - (Stmt.map(s => List(s)))) +val NumParserInt = new MapParser(NumParser, (s: String) => s.toInt) -Stmts.parse_all("x2:=5+3;") -Block.parse_all("{x:=5;y:=8}") -Block.parse_all("if(false)then{x:=5}else{x:=10}") +// the following string interpolation allows us to write +// StrParser(_some_string_) more conveniently as +// +// p"<_some_string_>" + +implicit def parser_interpolation(sc: StringContext) = new { + def p(args: Any*) = StrParser(sc.s(args:_*)) +} + -val fib = """n := 10; - minus1 := 0; - minus2 := 1; - temp := 0; - while (n > 0) do { - temp := minus2; - minus2 := minus1 + minus2; - minus1 := temp; - n := n - 1 - }; - result := minus2""".replaceAll("\\s+", "") +// more convenient syntax for parser combinators +implicit def ParserOps[I : IsSeq, T](p: Parser[I, T]) = new { + def ||(q : => Parser[I, T]) = new AltParser[I, T](p, q) + def ~[S] (q : => Parser[I, S]) = new SeqParser[I, T, S](p, q) + def map[S](f: => T => S) = new MapParser[I, T, S](p, f) +} -Stmts.parse_all(fib) +// these implicits allow us to use an infix notation for +// sequences and alternatives; we also can write the usual +// map for a MapParser + + +// with this NumParserInt can now be written more conveniently +// as: + +val NumParserInt2 = NumParser.map(_.toInt) -// an interpreter for the WHILE language -type Env = Map[String, Int] +// A parser for palindromes (just returns them as string) +lazy val Pal : Parser[String, String] = { + (p"a" ~ Pal ~ p"a").map{ case ((x, y), z) => s"$x$y$z" } || + (p"b" ~ Pal ~ p"b").map{ case ((x, y), z) => s"$x$y$z" } || + p"a" || p"b" || p"" +} + +// examples +Pal.parse_all("abaaaba") +Pal.parse("abaaaba") + +println("Palindrome: " + Pal.parse_all("abaaaba")) -def eval_aexp(a: AExp, env: Env) : Int = a match { - case Num(i) => i - case Var(s) => env(s) - case Aop("+", a1, a2) => eval_aexp(a1, env) + eval_aexp(a2, env) - case Aop("-", a1, a2) => eval_aexp(a1, env) - eval_aexp(a2, env) - case Aop("*", a1, a2) => eval_aexp(a1, env) * eval_aexp(a2, env) - case Aop("/", a1, a2) => eval_aexp(a1, env) / eval_aexp(a2, env) -} +// A parser for wellnested parentheses +// +// P ::= ( P ) P | epsilon +// +// (transforms '(' -> '{' , ')' -> '}' ) +lazy val P : Parser[String, String] = { + (p"(" ~ P ~ p")" ~ P).map{ case (((_, x), _), y) => "{" + x + "}" + y } || + p"" +} + +println(P.parse_all("(((()()))())")) +println(P.parse_all("(((()()))()))")) +println(P.parse_all(")(")) +println(P.parse_all("()")) + +// A parser for arithmetic expressions (Terms and Factors) -def eval_bexp(b: BExp, env: Env) : Boolean = b match { - case True => true - case False => false - case Bop("==", a1, a2) => eval_aexp(a1, env) == eval_aexp(a2, env) - case Bop("!=", a1, a2) => !(eval_aexp(a1, env) == eval_aexp(a2, env)) - case Bop(">", a1, a2) => eval_aexp(a1, env) > eval_aexp(a2, env) - case Bop("<", a1, a2) => eval_aexp(a1, env) < eval_aexp(a2, env) - case And(b1, b2) => eval_bexp(b1, env) && eval_bexp(b2, env) - case Or(b1, b2) => eval_bexp(b1, env) || eval_bexp(b2, env) -} +lazy val E: Parser[String, Int] = { + (T ~ p"+" ~ E).map{ case ((x, _), z) => x + z } || + (T ~ p"-" ~ E).map{ case ((x, _), z) => x - z } || T } +lazy val T: Parser[String, Int] = { + (F ~ p"*" ~ T).map{ case ((x, _), z) => x * z } || F } +lazy val F: Parser[String, Int] = { + (p"(" ~ E ~ p")").map{ case ((_, y), _) => y } || NumParserInt } -def eval_stmt(s: Stmt, env: Env) : Env = s match { - case Skip => env - case Assign(x, a) => env + (x -> eval_aexp(a, env)) - case If(b, bl1, bl2) => if (eval_bexp(b, env)) eval_bl(bl1, env) else eval_bl(bl2, env) - case While(b, bl) => - if (eval_bexp(b, env)) eval_stmt(While(b, bl), eval_bl(bl, env)) - else env - case Write(x) => { println(env(x)) ; env } -} +println(E.parse_all("1+3+4")) +println(E.parse("1+3+4")) +println(E.parse_all("4*2+3")) +println(E.parse_all("4*(2+3)")) +println(E.parse_all("(4)*((2+3))")) +println(E.parse_all("4/2+3")) +println(E.parse("1 + 2 * 3")) +println(E.parse_all("(1+2)+3")) +println(E.parse_all("1+2+3")) + -def eval_bl(bl: Block, env: Env) : Env = bl match { - case Nil => env - case s::bl => eval_bl(bl, eval_stmt(s, env)) -} +// with parser combinators (and other parsing algorithms) +// no left-recursion is allowed, otherwise the will loop -def eval(bl: Block) : Env = eval_bl(bl, Map()) +lazy val EL: Parser[String, Int] = + ((EL ~ p"+" ~ EL).map{ case ((x, y), z) => x + z} || + (EL ~ p"*" ~ EL).map{ case ((x, y), z) => x * z} || + (p"(" ~ EL ~ p")").map{ case ((x, y), z) => y} || + NumParserInt) -// parse + evaluate fib program; then lookup what is -// stored under the variable result -println(eval(Stmts.parse_all(fib).head)("result")) +// this will run forever: +//println(EL.parse_all("1+2+3")) -// more examles +// non-ambiguous vs ambiguous grammars + +// ambiguous +lazy val S : Parser[String, String] = + (p"1" ~ S ~ S).map{ case ((x, y), z) => x + y + z } || p"" -// calculate and print all factors bigger -// than 1 and smaller than n -println("Factors") +//println(time(S.parse("1" * 10))) +//println(time(S.parse_all("1" * 10))) + +// non-ambiguous +lazy val U : Parser[String, String] = + (p"1" ~ U).map{ case (x, y) => x + y } || p"" -val factors = - """n := 12; - f := 2; - while (f < n / 2 + 1) do { - if ((n / f) * f == n) then { write(f) } else { skip }; - f := f + 1 - }""".replaceAll("\\s+", "") +//println(time(U.parse("1" * 10))) +//println(time(U.parse_all("1" * 10))) +println(U.parse("1" * 25)) + +U.parse("11") +U.parse("11111") +U.parse("11011") -eval(Stmts.parse_all(factors).head) +U.parse_all("1" * 100) +U.parse_all("1" * 100 + "0") + +// you can see the difference in second example +//S.parse_all("1" * 100) // succeeds +//S.parse_all("1" * 100 + "0") // fails + -// calculate all prime numbers up to a number -println("Primes") +// A variant which counts how many 1s are parsed +lazy val UCount : Parser[String, Int] = + (p"1" ~ UCount).map{ case (_, y) => y + 1 } || p"".map{ _ => 0 } + +println(UCount.parse("11111")) +println(UCount.parse_all("11111")) + +// Two single character parsers +lazy val One : Parser[String, String] = p"a" +lazy val Two : Parser[String, String] = p"b" + +One.parse("a") +One.parse("aaa") -val primes = - """end := 100; - n := 2; - while (n < end) do { - f := 2; - tmp := 0; - while ((f < n / 2 + 1) && (tmp == 0)) do { - if ((n / f) * f == n) then { tmp := 1 } else { skip }; - f := f + 1 - }; - if (tmp == 0) then { write(n) } else { skip }; - n := n + 1 - }""".replaceAll("\\s+", "") +// note how the pairs nest to the left with sequence parsers +(One ~ One).parse("aaa") +(One ~ One ~ One).parse("aaa") +(One ~ One ~ One ~ One).parse("aaaa") + +(One || Two).parse("aaa") + + -eval(Stmts.parse_all(primes).head) +// a problem with the arithmetic expression parser: it +// gets very slow with deeply nested parentheses + +println("Runtime problem") +println(E.parse("1")) +println(E.parse("(1)")) +println(E.parse("((1))")) +//println(E.parse("(((1)))")) +//println(E.parse("((((1))))")) +//println(E.parse("((((((1))))))")) +//println(E.parse("(((((((1)))))))")) +//println(E.parse("((((((((1)))))))"))