# HG changeset patch # User Christian Urban # Date 1603113438 -3600 # Node ID 06cbaaad3ba886f5aa1d8298832792c27e7e3b3b # Parent a26a20acd1c2a301f7e397992187f12999408015 updated diff -r a26a20acd1c2 -r 06cbaaad3ba8 slides/slides03.pdf Binary file slides/slides03.pdf has changed diff -r a26a20acd1c2 -r 06cbaaad3ba8 slides/slides03.tex --- a/slides/slides03.tex Sat Oct 17 13:14:19 2020 +0100 +++ b/slides/slides03.tex Mon Oct 19 14:17:18 2020 +0100 @@ -1269,8 +1269,8 @@ \begin{center} \begin{tikzpicture}[scale=2,>=stealth',very thick, every state/.style={minimum size=0pt,draw=blue!50,very thick,fill=blue!20},] - \only<1->{\node[state, initial] (q0) at ( 0,1) {$\mbox{Q}_0$};} - \only<1->{\node[state] (q1) at ( 1,1) {$\mbox{Q}_1$};} + \only<1->{\node[state, initial,accepting] (q0) at ( 0,1) {$\mbox{Q}_0$};} + \only<1->{\node[state,accepting] (q1) at ( 1,1) {$\mbox{Q}_1$};} \only<1->{\node[state] (q2) at ( 2,1) {$\mbox{Q}_2$};} \path[->] (q0) edge[bend left] node[above] {\alert{$a$}} (q1) (q1) edge[bend left] node[above] {\alert{$b$}} (q0) @@ -1327,12 +1327,96 @@ \end{center} } -\onslide<3->{ + +\only<3-9>{\small +\begin{textblock}{6}(1,0.8) +\begin{bubble}[6.7cm] +\begin{tabular}{r@ {\hspace{1mm}}c@ {\hspace{1mm}}l} +\multicolumn{3}{@{}l}{substitute \bl{$\mbox{Q}_1$} into \bl{$\mbox{Q}_0$} \& \bl{$\mbox{Q}_2$}:}\\ +\bl{$\mbox{Q}_0$} & \bl{$=$} & \bl{$\mbox{Q}_0\,b + \mbox{Q}_0\,a\,b + \mbox{Q}_2\,b + \ONE$}\\ +\bl{$\mbox{Q}_2$} & \bl{$=$} & \bl{$\mbox{Q}_0\,a\,a + \mbox{Q}_2\,a$} +\end{tabular} +\end{bubble} +\end{textblock}} + +\only<4-9>{\small +\begin{textblock}{6}(2,4.15) +\begin{bubble}[6.7cm] +\begin{tabular}{r@ {\hspace{1mm}}c@ {\hspace{1mm}}l} +\multicolumn{3}{@{}l}{simplifying \bl{$\mbox{Q}_0$}:}\\ +\bl{$\mbox{Q}_0$} & \bl{$=$} & \bl{$\mbox{Q}_0\,(b + a\,b) + \mbox{Q}_2\,b + \ONE$}\\ +\bl{$\mbox{Q}_2$} & \bl{$=$} & \bl{$\mbox{Q}_0\,a\,a + \mbox{Q}_2\,a$} +\end{tabular} +\end{bubble} +\end{textblock}} + +\only<6-9>{\small +\begin{textblock}{6}(3,7.55) +\begin{bubble}[6.7cm] +\begin{tabular}{r@ {\hspace{1mm}}c@ {\hspace{1mm}}l} + \multicolumn{3}{@{}l}{Arden for \bl{$\mbox{Q}_2$}:}\\ +\bl{$\mbox{Q}_0$} & \bl{$=$} & \bl{$\mbox{Q}_0\,(b + a\,b) + \mbox{Q}_2\,b + \ONE$}\\ +\bl{$\mbox{Q}_2$} & \bl{$=$} & \bl{$\mbox{Q}_0\,a\,a\,(a^*)$} +\end{tabular} +\end{bubble} +\end{textblock}} + +\only<7-9>{\small +\begin{textblock}{6}(4,10.9) +\begin{bubble}[7.5cm] +\begin{tabular}{r@ {\hspace{1mm}}c@ {\hspace{1mm}}l} + \multicolumn{3}{@{}l}{Substitute \bl{$\mbox{Q}_2$} and simplify:}\\ +\bl{$\mbox{Q}_0$} & \bl{$=$} & \bl{$\mbox{Q}_0\,(b + a\,b + a\,a\,(a^*)\,b) + \ONE$}\\ +\end{tabular} +\end{bubble} +\end{textblock}} + +\only<8-9>{\small +\begin{textblock}{6}(5,13.4) +\begin{bubble}[7.5cm] +\begin{tabular}{r@ {\hspace{1mm}}c@ {\hspace{1mm}}l} + \multicolumn{3}{@{}l}{Arden again for \bl{$\mbox{Q}_0$}:}\\ +\bl{$\mbox{Q}_0$} & \bl{$=$} & \bl{$(b + a\,b + a\,a\,(a^*)\,b)^*$}\\ +\end{tabular} +\end{bubble} +\end{textblock}} + + +\only<9-10>{\small +\begin{textblock}{6}(6,11.5) +\begin{bubble}[6.7cm] +\begin{tabular}{r@ {\hspace{1mm}}c@ {\hspace{1mm}}l} +\multicolumn{3}{@{}l}{Finally:}\\ +\bl{$\mbox{Q}_0$} & \bl{$=$} & \bl{$(b + a\,b + a\,a\,(a^*)\,b)^*$}\\ +\bl{$\mbox{Q}_1$} & \bl{$=$} & \bl{$(b + a\,b + a\,a\,(a^*)\,b)^*\,a$}\\ +\bl{$\mbox{Q}_2$} & \bl{$=$} & \bl{$(b + a\,b + a\,a\,(a^*)\,b)^*\,a\,a\,(a^*)$}\\ +\end{tabular} +\end{bubble} +\end{textblock}} + + + + + +\only<5-6>{ +\begin{textblock}{6}(0.7,11.9) +\begin{bubble}[6.7cm] Arden's Lemma: \begin{center} If \bl{$q = q\,r + s$}\; then\; \bl{$q = s\, r^*$} \end{center} -} +\end{bubble} +\end{textblock}} + +\only<8>{ +\begin{textblock}{6}(1.1,7.8) +\begin{bubble}[6.7cm] +Arden's Lemma: +\begin{center} +If \bl{$q = q\,r + s$}\; then\; \bl{$q = s\, r^*$} +\end{center} +\end{bubble} +\end{textblock}} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @@ -1376,35 +1460,35 @@ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -\begin{frame}[c] - -Given the function - -\begin{center} -\bl{\begin{tabular}{r@{\hspace{1mm}}c@{\hspace{1mm}}l} -$rev(\ZERO)$ & $\dn$ & $\ZERO$\\ -$rev(\ONE)$ & $\dn$ & $\ONE$\\ -$rev(c)$ & $\dn$ & $c$\\ -$rev(r_1 + r_2)$ & $\dn$ & $rev(r_1) + rev(r_2)$\\ -$rev(r_1 \cdot r_2)$ & $\dn$ & $rev(r_2) \cdot rev(r_1)$\\ -$rev(r^*)$ & $\dn$ & $rev(r)^*$\\ -\end{tabular}} -\end{center} - - -and the set - -\begin{center} -\bl{$Rev\,A \dn \{s^{-1} \;|\; s \in A\}$} -\end{center} - -prove whether - -\begin{center} -\bl{$L(rev(r)) = Rev (L(r))$} -\end{center} - -\end{frame} +%\begin{frame}[c] +% +%Given the function +% +%\begin{center} +%\bl{\begin{tabular}{r@{\hspace{1mm}}c@{\hspace{1mm}}l} +%$rev(\ZERO)$ & $\dn$ & $\ZERO$\\ +%$rev(\ONE)$ & $\dn$ & $\ONE$\\ +%$rev(c)$ & $\dn$ & $c$\\ +%$rev(r_1 + r_2)$ & $\dn$ & $rev(r_1) + rev(r_2)$\\ +%$rev(r_1 \cdot r_2)$ & $\dn$ & $rev(r_2) \cdot rev(r_1)$\\ +%$rev(r^*)$ & $\dn$ & $rev(r)^*$\\ +%\end{tabular}} +%\end{center} +% +% +%and the set +% +%\begin{center} +%\bl{$Rev\,A \dn \{s^{-1} \;|\; s \in A\}$} +%\end{center} +% +%prove whether +% +%\begin{center} +%\bl{$L(rev(r)) = Rev (L(r))$} +%\end{center} +% +%\end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%