
Coursework 3

This coursework isworth 10% and is due on 2nd January at 16:00. You are asked
to implement a parser for the WHILE language and also an interpreter. The
parser needs to use parser combinators. You can do the implementation in any
programming language you like, but you need to submit the source code with
which you answered the questions, otherwise a mark of 0% will be awarded.
If you use Scala in your code, a good place to start is the file comb1.sc and
comb2.sc uploaded to KEATS. Feel free to use the “hack” explained during the
lectures. This might make your grammar simpler. However, make sure you
understand the code involved in the “hack” because if you just do “mix-and-
match” you will receive strange errors. The main function that will be tested is
called eval and Stmts.parse_all. The latter expects a list of tokens as input
and generates anAST. The former expects anAST and “runs” the program. The
marks will be distributed such that 6 marks are given for the correct grammar
(and parsers); 4 marks for the correct eval function. You should use the lexer
from CW2 for the parser - you potentially need to make additions for CW2.

DisclaimerExclamation-Triangle

It should be understood that the work you submit represents your own effort.
You have not copied from anyone else. An exception is the Scala code I showed
during the lectures or uploaded to KEATS, which you can both use. You can
also use your own code from the CW 1 and CW 2. But do not be tempted to ask
Github Copilot for help or do any other shenanigans like this!

Syntax Error in Template File cw03.scExclamation-Triangle

Apologies, there is a small syntax error in the template file where a variable
needs to be called tks instead of tk. The code in question is at the end of
cw03.sc and should be like this (see lines 5, 6 and 8):

1 @main
2 def test(file: String) = {
3 val contents = os.read(os.pwd / "examples" / file)
4 println(s"Lex $file: ")
5 val tks = tokenise(contents)
6 println(tks.mkString(","))
7 println(s"Parse $file: ")
8 val ast = Stmts.parse_all(tks).head
9 println(ast)
10 println(s"Eval $file: ")
11 println(eval(ast))
12 }

1

Question 1

Design a grammar for the WHILE language and give the grammar rules. The
main categories of non-terminals should be:

• arithmetic expressions (with the operations from the previous course-
work, that is +, -, *, / and %)

• boolean expressions (with the operations ==, <, >, >=, <=, !=, &&, ||, true
and false)

• single statements (that is skip, assignments, ifs, while-loops, read and
write)

• compound statements separated by semicolons

• blocks which are enclosed in curly parentheses

Make sure the grammar is not left-recursive.

Question 2

You should implement a parser for the WHILE language using parser combi-
nators. Be careful that the parser takes as input a list of tokens generated by the
tokenizer from the previous coursework. For this you might want to filter out
whitespaces and comments. Your parser should be able to handle the WHILE
programs in the examples directory. The output of the parser is an abstract
syntax tree (AST). A (possibly incomplete) datatype for ASTs of the WHILE
language is shown in Figure 1.

Question 3

Implement an interpreter for the WHILE language you designed and parsed
in Question 1 and 2. This interpreter should take as input an AST. However
be careful because, programs contain variables and variable assignments. This
means you need to maintain a kind of memory, or environment, where you
can look up a value of a variable and also store a new value if it is assigned.
Therefore an evaluation function (interpreter) needs to look roughly as follows

eval_stmt(stmt, env)

where stmt corresponds to the parse tree of the program and env is an environ-
ment acting as a store for variable values. Consider the Fibonacci program in
Figure 2. At the beginning of the program this store will be empty, but needs to
be extended in line 3 and 4where the variables minus1 and minus2 are assigned
values. These values need to be reassigned in lines 7 and 8. The program should
be interpreted according to straightforward rules: for example an if-statement
will “run” the if-branch if the boolean evaluates to true, otherwise the else-
branch. Loops should be run as long as the boolean is true. Note also that

2

abstract class Stmt
abstract class AExp
abstract class BExp

type Block = List[Stmt]

case object Skip extends Stmt
case class If(a: BExp, bl1: Block, bl2: Block) extends Stmt
case class While(b: BExp, bl: Block) extends Stmt
case class Assign(s: String, a: AExp) extends Stmt
case class Read(s: String) extends Stmt
case class WriteVar(s: String) extends Stmt
case class WriteStr(s: String) extends Stmt

// for printing variables and strings

case class Var(s: String) extends AExp
case class Num(i: Int) extends AExp
case class Aop(o: String, a1: AExp, a2: AExp) extends AExp

case object True extends BExp
case object False extends BExp
case class Bop(o: String, a1: AExp, a2: AExp) extends BExp
case class Lop(o: String, b1: BExp, b2: BExp) extends BExp

// logical operations: and, or

Figure 1: The datatype for abstract syntax trees in Scala.

3

some programs contain a read-statement, which means you need to read and
integer from the commandline and store the value in the corresponding vari-
able. Programs you should be able to run are given in the examples directory.
The output of the primes.while should look as follows:

2
3
5
7
11
13
17
19
23
29
31
37
41
43
47
53
59
61
67
71
73
79
83
89
97
Map(end -> 100, n -> 100, f -> 4, tmp -> 1)

Figure 2: Sample output for the file primes.while.

4

