
Coursework 2

This coursework is worth 10% and is due on 2nd January at 16:00. You are
asked to implement the Sulzmann & Lu lexer for the WHILE language. You
can do the implementation in any programming language you like, but you
need to submit the source code with which you answered the questions, oth-
erwise a mark of 0% will be awarded. If you use Scala in your code, a good
place to start is the file lexer.sc and token.sc uploaded to KEATS. The tem-
plate file on Github is called cw02.sc. The example files are in the subdirectory
examples. The main function that will be tested is called tokenise. The marks
will be distributed such that 3 marks are given for the correct WHILE_REGS regu-
lar expression; 5marks for the correct inj and mkepsdefinitions; and twomarks
when tokenise produces the correct results for the example files.

TestingExclamation-Triangle

For the marking, the functions that will be tested are tokenise, inj and mkeps.

DisclaimerExclamation-Triangle

It should be understood that the work you submit represents your own effort.
You have not copied from anyone else including CoPilot, ChatGPT & Co. An
exception is the Scala code from KEATS and the code I showed during the lec-
tures, which you can both freely use. You can also use your own code from the
CW 1.

Question 1

To implement a lexer for the WHILE language, you first need to design the
appropriate regular expressions for the following eleven syntactic entities:

1. keywords are

while, if, then, else, do, for, to, true, false, read, write, skip

2. operators are: +, -, *, %, /, ==, !=, >, <, <=, >=, :=, &&, ||

3. letters are uppercase and lowercase

4. symbols are letters plus the characters ., _, >, <, =, ;, , (comma), \ and :

5. parentheses are (, {,) and }

6. digits are 0 to 9

7. there are semicolons ;

8. whitespaces are either " " (one or more) or \n or \t or \r

1

9. identifiers are letters followed by underscores __, letters or digits

10. numbers for numbers give a regular expression that can recognise 0, but
not numbers with leading zeroes, such as 001

11. strings are enclosed by double quotes, like "…", and consisting of symbols,
digits, parentheses, whitespaces and \n (note the latter is not the escaped
version but \ followed by n, otherwise we would not be able to indicate
in our strings when to write a newline).

12. comments start with // and contain symbols, spaces, parentheses and
digits until the end-of-the-line markers

13. endo-of-line-markers are \n and \r\n

You can use the basic regular expressions

0, 1, c, r1 + r2, r1 · r2, r∗

but also the following extended regular expressions

[c1, c2, . . . , cn] a set of characters
r+ one or more times r
r? optional r
r{n} n-times r

Later on you will also need the record regular expression:

REC(x : r) record regular expression

Try to design your regular expressions to be as small as possible. For example
you should use character sets for identifiers and numbers. Feel free to use the
general character constructor CFUN introduced in CW 1.

Question 2

Implement the Sulzmann & Lu lexer from the lectures. For this you need to
implement the functions nullable and der (you can use your code from CW 1),
as well as mkeps and inj. These functions need to be appropriately extended for
the extended regular expressions from Q1. The definitions you need to create
are:

2

mkeps([c1, c2, . . . , cn])
def
= ?

mkeps(r+) def
= ?

mkeps(r?)
def
= ?

mkeps(r{n})
def
= ?

inj ([c1, c2, . . . , cn]) c . . . def
= ?

inj (r+) c . . . def
= ?

inj (r?) c . . . def
= ?

inj (r{n}) c . . . def
= ?

where inj takes three arguments: a regular expression, a character and a value.
Test your lexer code with at least the two small examples below:

regex: string:

a{3} aaa
(a + 1){3} aa

Both strings should be successfully lexed by the respective regular expression,
that means the lexer returns in both examples a value.

Also add the record regular expression from the lectures to your lexer and
complete the function env so that it returns all assignments from a value (this
then allows you to extract easily the tokens from a value in the next question).

Finally make that the function lexing_simp generates with the regular expres-
sion from Q1 for the string

"read n;"

the following pairs:

List((k,read), (w,), (i,n), (s,;))

Question 3

Make sure your lexer from Q2 also simplifies regular expressions after each
derivation step and rectifies the computed values after each injection. Use this
lexer to tokenise the sixWHILE programs in the examples directory. Make sure
that the tokenise function filters out whitespaces and comments.

3

