Automata and
Formal Languages (3)

Email: christian.urban at kcl.ac.uk

Office: Sr.27 (st floor Strand Building)

Slides: KEATS (also home work and course-
work is there)

Regular Expressions

In programming languages they are often used to
recognise:

symbols, digits

identifiers

numbers (non-leading zeros)
keywords

comments

http://www.regexper.com

http://www.regexper.com

Last Week

Last week I showed you a regular expression
matcher which works provably correctly in all
cases.

matcher rs ifandonlyif s € L(r)

by Janusz Brzozowski (1964)

The Derivative of a Rexp

der c ()

der c (€)

der c(d)

der c(ry + 19)
der c(ry - ry)

der c (r*)
ders||r
ders (c:s)r

def

o
& if ¢ = d then € else &

def
' der cr, + der cry

“ if nullable(r)
then (der cry) - o + der c 7y

else (der cry) - 1o
def (dercr) - (r*)
def
=r
“ ders s (der cr)

To see what is going on, define

DercA< {s|c:sec A}

For A = {”foo”,”bar”,” frak”} then

Der f A = {?00”,”rak”}
DerbA = {"ar”
Dera A = o

The Idea of the Algorithm

If we want to recognise the string “abc” with
regular expression r then

@ Dera (L(r))

The Idea of the Algorithm

If we want to recognise the string “abc” with
regular expression r then

@ Dera (L(r))
@ Derb(Dera(L(r)))

The Idea of the Algorithm

If we want to recognise the string “abc” with
regular expression r then

@ Dera (L(r))

@ Derb(Dera (L(r)))
@ Derc(Derb(Dera(L(r))))

The Idea of the Algorithm

If we want to recognise the string “abc” with
regular expression r then

@ Dera (L(r))
@ Derb(Dera (L(r)))
@ Derc(Derb(Dera(L(r))))

Q finally we test whether the empty string is in this
set

The Idea of the Algorithm

If we want to recognise the string "abc” with
regular expression r then

@ Dera (L(r))
@ Derb(Dera (L(r)))
@ Derc(Derb(Dera(L(r))))

Q finally we test whether the empty string is in this
set

The matching algorithm works similarly, just over
regular expression instead of sets.

Input: string "abc” and regular expression r

Q@ derar
@ derb(derar)
@ derc(derb(derar))

Input: string "abc” and regular expression r

Q@ derar
@ derb(derar)
@ derc(derb(derar))

@ finally check whether the last regular expression
can match the empty string

We proved already
nullable(r) if and only if ™ € L(r)

by induction on the regular expression.

We proved already
nullable(r) ifand onlyif ” € L(r)

by induction on the regular expression.

Any Questions?

We need to prove
L(der cr) = Der c (L(r))

by induction on the regular expression.

Proofs about Rexps

@ P holds for @, € and c

e P holds for r; + 75 under the assumption that P
already holds for r; and 7».

e P holds for r; - 5 under the assumption that P
already holds for r; and 7».

e P holds for r* under the assumption that P
already holds for .

Proofs about Natural
Numbers and Strings

e P holds for 0 and

e P holds for n + 1 under the assumption that P
already holds for n

@ P holds for ”” and

e P holds for c:: s under the assumption that P
already holds for s

Languages

A language is a set of strings.
A regular expression specifies a language.

A language is regular iff there exists a regular
expression that recognises all its strings.

Languages

A language is a set of strings.
A regular expression specifies a language.
A language is regular iff there exists a regular

expression that recognises all its strings.

not all languages are regular, e.g. a™b™.

Regular Expressions

r o= O null
| € empty string / " / []
| ¢ character
SRR sequence
| 1+ 7 alternative / choice
| r* star (zero or more)

How about ranges [a-z], 7" and ~ r? Do they
increase the set of languages we can recognise?

Negation of Regular Expr’s

o ~T (everything that r cannot recognise)

def

o L(~7r)=UNIV — L(r)

o nullable(~ r) £ not (nullable(r))

o derc(~ 1) ¥ ~ (dercr)

Negation of Regular Expr’s

o ~T (everything that r cannot recognise)

def

o L(~7r)=UNIV — L(r)

o nullable(~ r) £ not (nullable(r))

o derc(~ 1) ¥ ~ (dercr)

Used often for recognising comments:

[(e (laz] o x e /- [az])) e

Negation

Assume you have an alphabet consisting of the
letters a, b and c only. Find a regular expression
that matches all strings except ab and ac.

Regular Exp’s for Lexing

Lexing separates strings into “words” /
components.

o Identifiers (non-empty strings of letters or digits,
starting with a letter)

e Numbers (non-empty sequences of digits
omitting leading zeros)

o Keywords (else, if, while, ...)

e White space (a non-empty sequence of blanks,
newlines and tabs)

o Comments

Automata

A deterministic finite automaton consists of:

a set of states

one of these states is the start state
some states are accepting states, and
there is transition function

which takes a state as argument and a character and
produces a new state

this function might not be everywhere defined

A(Q, qo, F,9)

start—»C_I0—>CI1—>Q4:)a b

N o, e

bC_’:CI2—>CI3

b

o the start state can be an accepting state
e it is possible that there is no accepting state

o all states might be accepting (but this does not
necessarily mean all strings are accepted)

for this automaton ¢ is the function

(@o,a) = q1 (qi,a) = q1 (g1, a) = qu

(qo,b) > @2 (q1,b) > @2 (gs,b) > q4 ™

Accepting a String
Given

A(Q, qo, F, 6)

you can define

Accepting a String

Given
(Q,QO,F 6)
you can define
S<q 7777) dé q
. f
o(q,c::s) = 0(d(q,c),5)

Whether a string s is accepted by A?

8((]0, 8) € F

Non-Deterministic
Finite Automata

A non-deterministic finite automaton consists
again of:

a finite set of states

one of these states is the start state

some states are accepting states, and

there is transition relation

(q17 (1,) — q2

(q1,a) — g3 (a1,€) = @

Two NFA Examples

Rexp to NFA

Caser{ - r

By recursion we are given two automata:

start) © start 000 ©

We need to (1) change the accepting nodes of the first
automaton into non-accepting nodes, and (2) connect them

via e-transitions to the starting state of the second
automaton.

start o oo oo ©

We need to (1) change the accepting nodes of the first
automaton into non-accepting nodes, and (2) connect them
via e-transitions to the starting state of the second
automaton.

Caser|{ + 19

By recursion we are given two automata:
1

Ve

-
We (1) need to introduce a new starting state and (2) connect
it to the original two starting states.

Caser| + 1o

T+ T

start

We (1) need to introduce a new starting state and (2) connect
it to the original two starting states.

AFL 03, King’s College London, 9. October 2013 — p. 25/30

Case r*

By recursion we are given an automaton for 7:

@)
start e O
O

rra

start

start

Why can’t we just have an epsilon transition from
the accepting states to the starting state?

Subset Construction

nodes a b

Z;
{0}

{1}

{2}
{0,1}
{0,2}
{1,2}
{0,1,2}

Subset Construction

S
Sy

nodes

Z;
{0}

{1}

{2}
{0,1}
{0,2}
{1,2}
{0,1,2}

Subset Construction

nodes a b
] 10} %]
{0} {o0,1,2} {2}
{1} {1} ©
{2}) {2}
{0,1}
{0,2}
{1,2}
{0,1,2}

Subset Construction

nodes a b

] 10} %]
{0} {o0,1,2} {2}

{1} {1} ©
{2}) {2}
{0,2} [{0,1,2} {2}
{1,2} {1} {2}
{0’]" 2} {O’]" 2} {2}

Subset Construction

a b
1%} (%)
{0,1,2} {2}
{1} o
o {2}
{0,1,2} {2}
{0,1,2} {2}
{1} {2}
{0,1,2} {2}

Regular Languages

A language is regular iff there exists a regular
expression that recognises all its strings.

or equivalently

A language is regular iff there exists a deterministic
finite automaton that recognises all its strings.

Regular Languages

A language is regular iff there exists a regular
expression that recognises all its strings.

or equivalently

A language is regular iff there exists a deterministic
finite automaton that recognises all its strings.

Why is every finite set of strings a regular
language?

a,b

,
a
sare —~()
b
b

minimal automaton

a,b

,
a
sare —~()
b
b

minimal automaton

Given the function

(oW
o
-

rev(d) =0

def
rev(e) =€

def
rev(c)=c
rev(r; + 1) Ere

def
rev(r; - ry) =re
rev(r*) < re

and the set

(7’1) + rev(ry)
) - rev(r)

('r)

Rev AL {s7'|s e A}

prove whether

L(rev(r)) =

Rev(L(r))

