Compilers and
Formal Languages (1)

Email: christian.urban at kcl.ac.uk
Office: N7.07 (North Wing, Bush House)
Slides: KEATS

The Goal of this Course

Write A Compiler

lexer parser code gen

The Goal of this Course

[lexer input: a string
”read(n);”

lexer output: a sequence of tokens

key(read); lpar; id(n); rpar; semi

parser code gen

The Goal of this Course

(lexer input: a string
”read(n);”

lexer output: a sequence of tokens

key(read); lpar; id(n); rpar; semi

S

lexing = recognising words (Stone of Rosetta)

_The Goaal of this Coyrse

parser input: a sequence of token
parser output: an abstract syntax tree

read
1par n rpar

parser

)
lexer code gen

_The Gaal of this Course

code generator:
istore 2
iload 2
ldc 10

isub h A Compiler

ifeq Label2

iload 2 parser code gen
N 4

_The Goal of this Course

code generator:

istore 2
iload 2

ldc 10

isub

ifeq Label2
iload 2

I 4

parse

Secs

* A Compiler

400

300

Ll

T T T T
200 400 oo 8oo 1,0001,200

n

The subject is quite old

e Turing Machines, 1936

o Regular Expressions, 1956

e The first compiler for COBOL, 1957
(Grace Hopper)

o But surprisingly research papers are still
published nowadays

Grace Hopper
(she made it to David Letterman’s Tonight Show,

http://www.youtube.com/watch?v=aZOxtURhfEU)

http://www.youtube.com/watch?v=aZOxtURhfEU

Why Bother?

Ruby, Python, Java
r
¢ 30 || —e—Python
g —+— Ruby
.E 20
L
£
5§ 10 15 20 25 30 "

» 30
o 325
2 20
S
g o
5

o

§ 10 15 20 25§ 30 M

Us (after next lecture)

time in secs

time in secs

30 ¢
25 |
20 |
15 |
10

5

o

30 |
25 +
20 |
15 +
10 |

g -

o 5,000 10,000"

o 6

2-10% 4-10° 6-10

matching [a?]{n}[a]{n} and [a*]*b against&.’.a/

n

Lectures1- ;5

transforming strings into structured data
[
Lexmg based on regular expressions
(recognising “words”)

Parsing

(recognising “sentences”)

Stone of Rosetta

Familiar Regular Expr.

[2-z0-9_.-]+ @ [2a-z0-9.-]+ . [a-z.]{2,6}

re*

re+

re?
re{n}
re{n,m}
[...]
[~...]

a-zA-7Z
\d

(re)

matches o or more times

matches 1 or more times

matches o or 1 times

matches exactly n number of times

matches at least n and at most m times

matches any single character inside the brackets
matches any single character not inside the
brackets

character ranges

matches digits; equivalent to [0-9]

matches every character except newline

groups regular expressions and remembers the
matched text

Today

e While the ultimate goal is to implement a small
compiler (a really small one for the JVM)...

Let’s start with:

e a web-crawler
e an email harvester
e (a web-scraper)

A Web-Crawler

@ given an URL, read the corresponding webpage
@ extract all links from it
@ call the web-crawler again for all these links

A Web-Crawler

@ given an URL, read the corresponding webpage
@ if not possible print, out a problem

@ if possible, extract all links from it

@ call the web-crawler again for all these links

A Web-Crawler

@ given an URL, read the corresponding webpage
@ if not possible print, out a problem

@ if possible, extract all links from it

Q call the web-crawler again for all these links

(we need a bound for the number of recursive calls)
(the purpose is to check all links on my own webpage)

GET request

Wiebpase /
POST data Browser

Scala

A simple Scala function for reading webpages:

import io.Source

def get_page(url: String) : String = {
Source.fromURL(url).take(10000).mkString
}

Scala

A simple Scala function for reading webpages:

import io.Source

def get_page(url: String) : String = {
Source.fromURL(url).take(10000).mkString
}

get_page(”””’http://www.inf.kcl.ac.uk/staff/urbanc/”"”)

Scala

A simple Scala function for reading webpages:

import io.Source

def get_page(url: String) : String = {
Source.fromURL(url).take(10000).mkString
}

get_page(”””’http://www.inf.kcl.ac.uk/staff/urbanc/”"”)

A slightly more complicated version for handling errors:

def get_page(url: String) : String = {
Try(Source.fromURL(url).take(10000).mkString).
getOrkElse { println(s” Problem with: $url”); >}

A Regular Expression

e ...is a pattern or template for specifying strings

https?://[7]*”

matches for example

”http://www.foobar.com”
”https://www.tls.org”

A Regular Expression

e ...is a pattern or template for specifying strings

J)J.’JJ.”httpS? : // [/\J.’] k333933 .r

matches for example

”http://www.foobar.com”
”https://www.tls.org”

Finding Operations
rexp.findAllIn(string)

returns a list of all (sub)strings that match the
regular expression

rexp.findFirstIn(string)
returns either

e None if no (sub)string matches or
e Some(s) with the first (sub)string

Va]_ http_patter.n = »»»»https) : // [/\»] k3333339 .r
def unquote(s: String) = s.drop(1l).dropRight(1)

def get_all URLs(page: String) : Set[String] =
http_pattern.findAllIn(page).map(unquote).toSet

def crawl(url: String, n: Int) : Unit = {
if (n == 0) ()
else {
println(s”Visiting: $n $url”)
for (u <- get_all URLs(get_page(url))) crawl(u, n - 1)
}
}

crawl (some_start_URL, 2)

A version that only crawls links in “my” domain:

val my_urls = ”””urbanc”””.r

def crawl(url: String, n: Int) : Unit = {
if (n == 0) ()
else if (my_urls.findFirstIn(url) == None) {
println(s”Visiting: $n $url”)
get_page(url); ()
}
else {
println(s”Visiting: $n $url”)
for (u <- get_all URLs(get_page(url))) crawl(u, n - 1)
}
}

A little email harvester:

val http_pattern = »””7”https?://["7]*777” . r
val email_pattern =
»;;,:([3—29—9_\.—]+)@([\da-z\.—]+)\,([a_z\.]{216})nm,-r\

def print_str(s: String) =
if (s == ””) () else println(s)

def crawl(url: String, n: Int) : Unit = {
if (n ==19) ()
else {
println(s”Visiting: $n $url”)
val page = get_page(url)
print_str(email_pattern.findAllIn(page).mkString(”\n”))
for (u <- get_all URLs(page).par) crawl(u, n - 1)

http://net.tutsplus.com/tutorials/other/8-regular-expressions-you-should-know/

http://net.tutsplus.com/tutorials/other/8-regular-expressions-you-should-know/

Regular Expressions

Their inductive definition:

retr,
ry 7T,

null

empty string / > / ||
character
alternative / choice
sequence

star (zero or more)

case

Th case

abstract class Rexp

object ZERO extends Rexp
object ONE extends Rexp

case class CHAR(c: Char) extends Rexp
case class ALT(rl: Rexp, r2: Rexp) extends Rexp
case class SEQ(rl: Rexp, r2: Rexp) extends Rexp
case class STAR(r: Rexp) extends Rexp
\
r o= o null
| x empty string / > / ||
| ¢ character
| ity alternative / choice
| oy sequence
I star (zero or more)

Strings

...are lists of characters. For example “hello”
b, e,1,1,0] or just hello

the empty string: [| or »”

the concatenation of two strings:
5@y,

fo0 @ bar = foobar, baz @ || = baz

Languages, Strings

o Strings are lists of characters, for example
[], abc (Pattern match: c::s)

e A language is a set of strings, for example

{1[], bello, foobar,a, abc}

o Concatenation of strings and languages
foo @ bar = foobar
A@B ¥ {s;@s, | 5, € ANs, € B}

The Meaning of a

Regular Expression
L(o) & {}
Lx) £ {}
L(e) = {[}

Liri4+r) £ L(r)UL(r)

L(r,-r) £ {5@s,|s;€L(r) s, €L(r,)}
L(r*) &l

The Meaning of a

Regular Expression
L(o) = {}
Lx) £ {}
L(e) = {[}

Liri4+r) £ L(r)UL(r)

L(r,-r) £ {5@s,|s;€L(r) s, €L(r,)}
L(r*) o

The Meaning of a

Regular Expression
L(o) = {}
Lx) £ {}
L(e) = {[}

Liri4+r) £ L(r)UL(r)

L(r,-r) £ {5@s,|s;€L(r) s, €L(r,)}
L(r*) o

= {
L(r)"* o L(r)@L(r)" (append on sets)
{5:@s, | s; € L(r) \s, € L(r)"}

The Meaning of a
Regular Expression

{}

{{}

{le]}

L(r,) UL(r,)

{s:@s, | s, € L(r;) Ns, € L(r,) }
Uo<n L(r)"

[=N
-~

g g [1& Nl 115 118

h
—
N
N~—
S
A
e
&~
—

(r)@L(r)" (append on sets)
{5:@s, | s; € L(r) \s, € L(r)"}

The Meaning of Matching

A regular expression 7 matches a
string s provided

s € L(r)

...and the point of the next lecture is to decide this
problem as fast as possible (unlike Python, Ruby;
Java)

Written Exam

@ Accounts for §0%.

e You will understand the question “Is this relevant
for the exam?” is very demotivating for the
lecturer!

e Deal: Whatever is in the homework (and is not
marked “optional”) is relevant for the exam.

e Each lecture has also a handout. There are also
handouts about notation and Scala.

Coursework

@ Accounts for 20%. Two strands. Choose one!

Strand 1 Strand 2
o four programming | e one task: prove the
tasks: correctness of a regular
o matcher (4%, 19.10.) expression matcher in
o lexer (5%, 03.11.) the Isabelle theorem
o parser (5%, 23.11.)
o compiler (6%, 7.12.) prover

e 20%, submission 7.12.

@ Solving more than one strand will not give you more marks.

Lecture Capture

e Hope it works...

Lecture Capture

e Hope it works...

e Itis important to use lecture capture wisely:

o Lecture recordings are a study and revision aid.

o Statistically, there is a clear and direct link between
attendance and attainment: Students who do not attend
lectures, do less well in exams.

o Attending a lecture is more than watching it
online — if you do not attend, you miss out!

Questions?

