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There are more
problems, than there
are programs.

There must be a
problem for which
there is no program.
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Subsets

If A ⊆ B then A has
fewer elements than B

A ⊆ B and B ⊆ A

then A = B
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{ , , , , }

{ , , }

5 elements

3 elements
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Newton vs Feynman

classical physics quantum physics
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TheGoal of the Talk

show you that something
very unintuitive happens
with very large sets

convince you that there are
more problems than
programs
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B= { , , , , }

A= { , , }

|A|= 5, |B|= 3
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B= { , , , , }

A= { , , }

then |A| ≤ |B|
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B= { , , , , }

A= { , , }

for= has to be a one-to-onemapping
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Cardinality
|A| def

= “how many
elements”

A ⊆ B ⇒ |A| ≤ |B|

if there is an injective
function f : A → B then
|A| ≤ |B|

∀xy. f(x) = f(y) ⇒ x = y

CFL, King’s College London – p. 8/21



Cardinality
|A| def

= “how many
elements”

A ⊆ B ⇒ |A| ≤ |B|

if there is an injective
function f : A → B then
|A| ≤ |B|

∀xy. f(x) = f(y) ⇒ x = y

CFL, King’s College London – p. 8/21



A= { , , }

B= { , , }

then |A|= |B|
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Natural Numbers

N
def

= {0, 1, 2, 3, .......}

A is countable iff
|A| ≤ |N|
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First Question

|N − {0}| ? |N|

≥ or≤ or= ?

x 7→ x+ 1,
|N − {0}|= |N|
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|N − {0, 1}| ? |N|

|N − O| ? |N|

O
def
= odd numbers {1, 3, 5......}

E
def
= even numbers {0, 2, 4......}
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|N ∪−N| ? |N|

N
def
= positive numbers

{0, 1, 2, 3, ......}
−N

def
= negative numbers

{0,−1,−2,−3, ......}
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A is countable if there
exists an injective
f : A → N

A is uncountable if there
does not exist an
injective f : A → N

countable: |A| ≤ |N|
uncountable:
|A| > |N|

Does there exist such an
A ?
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Hilbert’s Hotel

…has as many rooms as there are
natural numbers
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Real Numbers between
0 and 1

1

2

3

4

3 3 3 3 3 3 . . .

1 2 3 4 5 6 7

0 1 0 1 0 . . .

7 8 5 3 9 . . .

. . .

. . .

|N| < |R|
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The Set of Problems
ℵ0

1

2

3

4

0 1 2 3 4 5 . . .

0 1 0 1 0 1 . . .

0 0 0 1 1 0 0

0 0 0 0 0 . . .

1 1 0 1 1 . . .

. . .

. . .

|Progs|= |N|< |Probs|
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Halting Problem

Assume a program H that
decides for all programs A
and all input data Dwhether

H(A,D) def
= 1 iff A(D)

terminates

H(A,D) def
= 0 otherwise
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Halting Problem (2)

Given such a program H
define the following program
C: for all programs A

C(A) def
= 0 iff H(A,A) = 0

C(A) def
= loops otherwise
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Contradiction

H(C, C) is either 0 or 1.

H(C, C) = 1
defH⇒ C(C) ↓ def C⇒

H(C, C) = 0

H(C, C) = 0
defH⇒ C(C) loops

def C⇒

H(C, C) = 1
Contradiction in both cases. So H
cannot exist.
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Take Home Points
there are sets that are more
infinite than others

even with the most powerful
computer we can imagine,
there are problems that
cannot be solved by any
program

in CS we actually hit quite
often such problems (halting
problem) CFL, King’s College London – p. 21/21


