Compilers and
Formal Languages

Email: christian.urban at kcl.ac.uk
Office: N7.07 (North Wing, Bush House)
Slides: KEATS (also home work is there)

Compilers & Boeings

First flight in 1994. They want to
achieve triple redundancy in
hardware faults.

They compile 1 Ada program to

o Intel 80486
@ Motorola 68040 (old Macintosh’s)
@ AMD 29050 (RISC chips used
often in laser printers)
using 3 independent compilers.

Compilers & Boeings

First flight in 1994. They want to
achieve triple redundancy in
hardware faults.

They compile 1 Ada program to

o Intel 80486
@ Motorola 68040 (old Macintosh’s)
@ AMD 29050 (RISC chips used
often in laser printers)
using 3 independent compilers.

Airbus uses C and static analysers.
Recently started using CompCert.

selL4 / Isabelle

o verified a microkernel operating
system (~28000 lines of C code)

@ US DoD has competitions to hack
into drones; they found that the
isolation guarantees of seL4 hold

up

@ CompCert and sel4 sell their code

POSIX Matchers

@ Longest match rule (“maximal
munch rule”): The longest initial
substring matched by any regular
expression is taken as the next
token.

iffoo._bla

@ Rule priority: For a particular
longest initial substring, the first
regular expression that can match
determines the token.

if._.bla

http://www.haskell.org/haskellwiki/Regex_Posix
http://www.haskell.org/haskellwiki/Regex_Posix

POSIX Matchers

@ Longest match rule (“maximal
munch rule”): The longest initial
substring matched by any regular
expression is taken as the next
token.

iffoo._bla

@ Rule priority: For a particular
longest initial substring, the first
regular expression that can match
determines the token.

if . _.bla
Kuklewicz: most POSIX matchers are

buggy
http://www.haskell.org/haskellwiki/

Raocay DAcivy

http://www.haskell.org/haskellwiki/Regex_Posix
http://www.haskell.org/haskellwiki/Regex_Posix

der ¢ (0) oo

der ¢ (1) Y

der ¢ (d) &' ifc=dthen 1else 0
derc (ri+r) = (dercr)+ (dercr)
derc (ri-r2) = if nullable(ry)

then ((der cry) -ry) + (dercry)
else (dercry) - rp
der ¢ (r*) = (dercr)-(r)
der ¢ (ri"}) if n = 0then 0
else if nullable(r) then (der c r) - (riTn=1})
else (der c r) - (rin=1})
derc (r{) & ifn=0theno
else (der c r) - (riTn=1})

Proofs about Rexps

Remember their inductive
definition:
r

|
|
| rnn
|
|
|
|
If we want to prove something, say

a property P(r), for all regular
expressions r then ...

Proofs about Rexp

(2)

P holds for 0, 1 and ¢

P holds for r; + r, under the
assumption that P already holds
forr; and r,.

P holds for ry - r, under the
assumption that P already holds
forr; and r,.

P holds for r* under the
assumption that P already holds
forr.

Proofs about Strings

If we want to prove something, say
a property P(s), for all strings s then

@ P holds for the empty string, and

@ P holds for the string c ::s under

the assumption that P already
holds for s

Correctness of the
Matcher

@ We want to prove

matches r sifand only ifs € L(r)

where
matches r s = nullable(ders s r)

Correctness of the
Matcher

We want to prove

matches r s ifand only if s € L(r)

where
matches r s = nullable(ders s r)

We can do this, if we know

L(der c r) = Der ¢ (L(r))

Some Lemmas

@ Derc (AUB) =
(Der ¢ A) U (Der c B)

o If[] € Athen

Derc (A@B) =
(Der c A)@B U (Der ¢ B)

o If[| & Athen
Derc (A@B) = (Derc A) @B

@ Derc (A*) = (Derc A) @A*

(interesting case)

Why?

Why does

Der ¢ (A*) = (Der c A) @ A*

hold?

Derc (A*) = Derc (A" —{[]})
= Derc((A—{[l})@A")
= (Derc (A—{[]})) @A
= (DercA)@A*

using the facts
Der ¢ A = Der c (

{
(A—{ll})@A” = A" —{[]}

>
|
—;
N~—
f5]
>
[a}

POSIX Spec

] €1 — Empty
¢ € ¢ — Char(c)

ser—v

s €r+r,— Left(v)
sen—v s&L(r)

s € r1 +r, — Right(v)

S1 €1 — Vg
S Erp — V)
—(ds3s4.53 # [| As3@ss = 55 As1@s3 € L(r1) Asg € L(ra))

$1@s, € rq - r; — Seq(vq,v;)

Sulzmann & Lu
Paper

@ | have no doubt the algorithm is
correct — the problem is | do not
believe their proof.

“How could | miss this? Well, | was rather careless when
stating this Lemma :)

Great example how formal machine checked proofs (and
proof assistants) can help to spot flawed reasoning steps.”

Sulzmann & Lu
Paper

@ | have no doubt the algorithm is
correct — the problem is | do not
believe their proof.

“How could | miss this? Well, | was rather careless when
stating this Lemma :)

Great example how formal machine checked proofs (and
proof assistants) can help to spot flawed reasoning steps.”

Sulzmann & Lu
Paper

| have no doubt the algorithm is
correct — the problem is | do not

i M M P

7

Lemma 3 (Projection and Injection). Let r be o regular expression, | a
letter and v a parse tree.

1 If - v:r and |v| = lw for some word w, then = projigy v:r\L
2. If = v:r\l then (projg. o injn) v="v.
3. If - v:r and |[v| = lw for some word w, then (inj.\; o projip) v =v.

MS:BUG[Come accross this issue when going back to our con-
structive reg-ex work| Consider + [Right (), Left a] : (a + €)*. However,
PrOj((ate)r,a) [Right (), Left a] fails! The point is that proj only works correctly
if applied on POSIX parse trees.

MS:Possible fixes We only ever apply proj on Posix parse trees.

For convenience, we write “F v : 7 is POSIX” where we mean that F v:r
holds and v is the POSIX parse tree of r for word |v|.

Lemma 2 follows from the following statement.

