
CSCI 742 - Compiler Construction

Lecture 11
Grammar Transformations
Instructor: Hossein Hojjat

February 9, 2018

Space of Context-free Grammars

Ambiguous

Unambiguous

LR
LL

Context-Free Grammars (CFG)

1

Recap: Ambiguity

• Ambiguous grammar: a word has more than one parse tree

• There is no algorithm to decide if a grammar is ambiguous

E → E + E

E → E × E
E → num

E

E

E

num

+ E

num

× E

num

E

E

num

+ E

E

num

× E

num

Two parse trees for num+ num× num

2

Ambiguity Patterns

• There are common ambiguity patterns in context-free grammars

• Example:

• If a non-terminal A ∈ N is both left-recursive and right-recursive
then G is ambiguous
• Left-recursive: it has a derivation A⇒+ Aα (α ∈ (N ∪ T)+)
• Right-recursive: it has a derivation A⇒+ βA (β ∈ (N ∪ T)+)

A

β A

A α

A

A

β A

α

3

Resolving Ambiguity

• Designing unambiguous grammars is usually tricky

• Sometimes it is possible to eliminate ambiguity by rewriting
grammar
• similar to Chomsky normal form conversion

• Occasionally more natural grammar is the ambiguous one

• Parser generators allow disambiguating declarations for ambiguous
grammars

4

Eliminating Ambiguity

AmbiguousUnambiguous

Goal: transform an ambiguous grammar to an equivalent unambiguous grammar

5

Equivalent Grammars

• Grammars G1 and G2 are equivalent if they generate the same
language

L(G1) = L(G2)

• In other words if a sentence can be derived from one of the
grammars it can be derived also from other grammar

6

Common Examples of Ambiguity

• Operators with different priorities

x+ y × z = t

• Associativity of operators of the same priority

x+ y − z + t

• Dangling else

if a then if b then s1 else s2

7

Example Ambiguity (Priority)

Two parse trees for num+ num× num

E → E + E

E → E × E
E → num

E

E

E

num

+ E

num

× E

num

priority(+) > priority(×)

E

E

num

+ E

E

num

× E

num

priority(×) > priority(+)

Multiplication should take precedence over addition

8

Example Ambiguity (Associativity)

How do operators with same priority associate in a sequence?

E → E + E

E → E − E
E → E ˆ E

E → num

E

E

E

num

+ E

num

− E

num

Left-associative

E

E

num

^ E

E

num

^ E

num

Right-associative

9

Resolving Ambiguity

Example

• This grammar is ambiguous

E→ E Op E | num
Op→ + | − | ∗ | /

• Two parse trees for num * num + num

E

OpE E

OpE E
num ∗

num num+

E

Op EE

OpE E
num+

num num∗

num * (num + num) (num * num) + num 10

Resolving Ambiguity

Example

• This grammar is ambiguous

E→ E Op E | num
Op→ + | − | ∗ | /

• Grammar does not consider operator precedence

• We can eliminate ambiguity by rewriting it to a new grammar

10

Resolving Ambiguity: Rewriting

num * num +num * numnum / num–

• Intuition: since * and / bind more tightly than + and -,
think of an expression as a series of “blocks” of terms multiplied and
divided together joined by +s and -s

Force a construction order where

• First decide how many “blocks” will be of terms joined by + and -

• Then expand those blocks by filling in the integers multiplied and
divided together

• A possible grammar:

S → T | S + T | S − T
T → num | T ∗ num | T/num

• Grammar is left recursive: makes operators left associative

11

Resolving Ambiguity: Rewriting

num * num +num * numnum / num–

Force a construction order where

• First decide how many “blocks” will be of terms joined by + and -

• Then expand those blocks by filling in the integers multiplied and
divided together

• A possible grammar:

S → T | S + T | S − T
T → num | T ∗ num | T/num

• Grammar is left recursive: makes operators left associative

11

Left Factoring

Question:

• Is the following grammar ambiguous? If yes how can we fix it?

S → if E then S else S | if E then S | · · ·
E → · · ·

Possible Solution:

• On expanding S we cannot choose between productions when the
next token is if

• We can solve this problem by factoring out the common parts

• This is called left-factoring

S → if E then S Opt

Opt→ else S | ε

• Is the grammar still ambiguous?

12

Left Factoring

Question:

• Is the following grammar ambiguous? If yes how can we fix it?

S → if E then S else S | if E then S | · · ·
E → · · ·

Possible Solution:

• On expanding S we cannot choose between productions when the
next token is if

• We can solve this problem by factoring out the common parts

• This is called left-factoring

S → if E then S Opt

Opt→ else S | ε

• Is the grammar still ambiguous?
12

Ambiguous if-then-else Grammar

S → if E then S Opt

Opt→ else S | ε

• Which if is the else attached to?

if

E1 S

if

E2 S1 Opt

S2

Opt

ε

if

E1 S

if

E2 S1 Opt

ε

Opt

S2

if E1 then if E2 then S1 else S2
13

Grammar for Closest-if Rule

• Want to rule out if E then if E then S else S

• Impose that unmatched if statements occur only in the else
clauses

S → Matched | Unmatched

Matched→ if E then Matched else Matched

Unmatched→ if E then S

| if E then Matched else Unmatched

14

Resolving Ambiguity: Precedence & Associativity

• Instead of rewriting the grammar,
use the more natural ambiguous grammars

• Use disambiguating declarations to disambiguate grammars

• Most parser generators allow precedence and associativity
declarations to disambiguate grammars

15

Associativity Declarations

• Consider ambiguous grammar:

E → E − E | num

E

E

num

− E

numE

num

E−

E

E

num

− E

num E

num

E−

• Left associativity declaration:
%left −

16

Precedence Declarations

• Consider ambiguous grammar:

E → E + E | E ∗ E | num

E

E

num

∗ E

numE

num

E+

E

E

num

+ E

num E

num

E∗

• Precedence declarations (order of precedence is low to high):
%left +

%left ∗

17

Create Equivalent LL Grammar

Ambiguous

Unambiguous

LL

18

Remove Left Recursion

• Left recursion poses problems for LL parsers (e.g. S → Sa)

• If a non-terminal can expand to a string with itself on the left,
parser may expand that non-terminal forever without actually
parsing anything

• It is possible to eliminate left recursion by transformation to right
recursion

• For a left-recursive pair of rules:

A→ Aα | β

• Replace with the following rules:

A→ βA′

A′ → αA′|ε

19

Exercise

Question
Eliminate left recursion from the following grammar

S → T | S + T | S − T
T → num | T ∗ num | T/num

20

non-LL Grammar

• Consider the grammar:
S → E + E | E
E → num | (E)

• and the two derivations

S ⇒ E ⇒ (E) ⇒ (num)

S ⇒ E + E ⇒ (E) + E ⇒ (num) + E ⇒ (num) + num

• Question. Can we decide between

S ⇒ E

S ⇒ E + E

as the first derivation step based on finite number of lookahead tokens?

• Answer. No. Grammar is not LL(k) for any number of k

21

Making a Grammar LL

• Problem: can’t decide which S production to apply until we see
symbol after first expression

• Left-factoring: Factor common prefix E, add new non-terminal E′

for what follows that prefix

S → E + E | E
E → num | (E)

S → EE′

E′ → +E | ε
E → num | (E)

22

Making a Grammar LL

• An LL grammar does not have left recursion

• Conversion to LL:

1) First step: remove left recursion from grammar

A→ Aα

| β

2) Second step: left factor the grammar

A→ α β1

| α β2

• This procedure does not necessarily convert any CFG to LL

23

Exercise

Question:
Left factor the following grammar:

A→ XA

| XB

| X

| Y

| Z

24

