
Handout 8 (A Functional Language)
The language we looked at in the previous lecture was rather primitive and the
compiler rather crude—everything was essentially compiled into a big mono‑
lithic chunk of code inside the main function. In this handout we like to have a
look at a slightly more comfortable language, which I call Fun‑language, and a
tiny‑teeny bit more realistic compiler. The Fun‑language is a small functional
programming language. A small collection of programs we want to be able to
write and compile is as follows:

def fib(n) = if n == 0 then 0
else if n == 1 then 1
else fib(n - 1) + fib(n - 2);

def fact(n) = if n == 0 then 1 else n * fact(n - 1);

def ack(m, n) = if m == 0 then n + 1
else if n == 0 then ack(m - 1, 1)
else ack(m - 1, ack(m, n - 1));

def gcd(a, b) = if b == 0 then a else gcd(b, a % b);

Compare the code of the fib‑program with the same program written in the
WHILE‑language…Fun is definitely more comfortable. We will still focus on
programs involving integers only, that means for example that every function
in Fun is expected to return an integer. The point of the Fun language is to
compile each function to a separate method in JVM bytecode (not just a big
monolithic code chunk). The means we need to adapt to some of the conven‑
tions of the JVM about methods.

The grammar of the Fun‑language is slightly simpler than theWHILE‑language,
because themain syntactic category are expressions (we do not have statements
in Fun). The grammar rules are as follows:1

Exp ::= Id | Num
| Exp + Exp | ... | (Exp)
| if BExp then Exp else Exp
| write Exp
| Exp ; Exp
| FunName (Exp, ..., Exp)

BExp ::= ...
Decl ::= Def ; Decl | Exp
Def ::= def FunName (x1, ..., xn) = Exp

1We of course have a slightly different (non‑left‑recursive) grammar for our parsing combina‑
tors. But for simplicity sake we leave these details to the implementation.

1

where, as usual, Id stands for variables and Num for numbers. We can call a
function by applying the arguments to a function name (as shown in the last
clause of Exp). The arguments in such a function call can be again expressions,
including other function calls. In contrast, when defining a function (see Def ‑
clause) the arguments need to be variables, say x1 to xn. We call the expression
on the right of = in a function definition as the body of the function. We have the
restriction that the variables inside a function body can only be those that are
mentioned as arguments of the function. A Fun‑program is then a sequence
of function definitions separated by semicolons, and a final “main” call of a
function that starts the computation in the program. For example

def fact(n) = if n == 0 then 1
else n * fact(n - 1);

write(fact(5))

is a valid Fun‑program. The parser of the Fun‑language produces abstract syn‑
tax trees which in Scala can be represented as follows:

abstract class Exp
abstract class BExp
abstract class Decl

case class Var(s: String) extends Exp
case class Num(i: Int) extends Exp
case class Aop(o: String , a1: Exp, a2: Exp) extends Exp
case class If(a: BExp, e1: Exp, e2: Exp) extends Exp
case class Write(e: Exp) extends Exp
case class Sequ(e1: Exp, e2: Exp) extends Exp
case class Call(name: String , args: List[Exp]) extends Exp

case class Bop(o: String , a1: Exp, a2: Exp) extends BExp

case class Def(name: String ,
args: List[String],
body: Exp) extends Decl

case class Main(e: Exp) extends Decl

The rest of the hand out is about compiling this language. Let us first look
at some clauses for compiling expressions. The compilation of arithmetic and
boolean expressions is just like for the WHILE‑language and does not need
any modification (recall that the compile‑function for boolean expressions takes
a third argument for the label where the control‑flow should jump when the
boolean expression is not true—this is needed for compiling ifs). One addi‑
tional feature in the Fun‑language are sequences. Their purpose is to do one
calculation after another or printing out an intermediate result. The reasonwhy
we need to be careful however is the convention that every expression can only
produce a single result (including sequences). Since this result will be on the
top of the stack, we need to generate a pop‑instruction for sequences in order

2

.method public static write(I)V
.limit locals 1
.limit stack 2
getstatic java/lang/System/out Ljava/io/PrintStream;
iload 0
invokevirtual java/io/PrintStream/println(I)V
return

.end method

Figure 1: The helper function for printing out integers.

to clean‑up the stack. For example, for an expression of the form exp1 ; exp2
we need to generate code where after the first code chunk a pop‑instruction is
needed.

compile(exp1)
pop
compile(exp2)

In effect we “forget” about the result the first expression calculates. I leave you
to think about why this sequence operator is still useful in the Fun‑language,
even if the first result is just “discarded”.

There is also one small modification we have to perform when calling the
write method. Remember in the Fun‑language we have the convention that
every expression needs to return an integer as a result (located on the top of the
stack). Our helper function implementing write, however, “consumes” the top
element of the stack and violates this convention. Therefore before we call, say,
write(1+2), we need to duplicate the top element of the stack like so

compile(1+2)
dup
invokestatic XXX/XXX/write(I)V

We also need to first generate code for the argument‑expression of write, which
in the WHILE‑language was only allowed to be a single variable.

Most of the new code in the compiler for the Fun‑language comes from func‑
tion definitions and function calls. For this have a look again at the helper func‑
tion in Figure ??. Assuming we have a function definition

def fname (x1, ... , xn) = ...

then we have to generate

3

.method public static fname (I...I)I
.limit locals ??
.limit stack ??
...
ireturn

.method end

where the number of Is corresponds to the number of arguments the function
has, say x1 to xn. The final I is needed in order to indicate that the function
returns an integer. Therefore we also have to use ireturn instead of return.
However, more interesting are the two .limit lines. Locals refers to the local
variables of the method, which can be queried and overwritten using the JVM
instructions iload and istore, respectively. Before we call a function with,
say, three arguments, we need to ensure that these three arguments are pushed
onto the stack (we will come to the corresponding code shortly). Once we are
inside the method, the arguments on the stack turn into local variables. So in
case we have three arguments on the stack, we will have inside the function
three local variables that can be referenced by the indices 0..2. Determining the
limit for local variables is the easy bit. Harder is the stack limit.

Calculating how much stack a program needs is equivalent to the Halting
problem, and thus undecidable in general. Fortunately, we are only asked how
much stack a single call of the function requires. This can be relatively easily
compiled by recursively analysing which instructions we generate and how
much stack they might require.

estimate(n) def
= 1

estimate(x) def
= 1

estimate(a1 aop a2)
def
= estimate(a1) + estimate(a2)

estimate(if b then e1 else e2)
def
= estimate(b)+

max(estimate(e1), estimate(e2))

estimate(write(e)) def
= estimate(e) + 1

estimate(e1; e2)
def
= max(estimate(e1), estimate(e2))

estimate(f (e1, ..., en))
def
= ∑i=1..n estimate(ei)

estimate(a1 bop a2)
def
= estimate(a1) + estimate(a2)

This function overestimates the stack size, for example, in the case of ifs. Since
we cannot predict which branch will be run, we have to allocate the maximum
of stack each branch might take. I leave you also to think about whether the
estimate in case of function calls is the best possible estimate. Note also that in
case of write we need to add one, because we duplicate the top‑most element
in the stack.

With this all in place, we can start generating code, for example, for the two
functions:

4

def suc(x) = x + 1;

def add(x, y) = if x == 0 then y
else suc(add(x - 1, y));

The successor function is a simple loading of the argument x (index 0) onto the
stack, as well as the number 1. Then we add both elements leaving the result of
the addition on top of the stack. This valuewill be returned by the suc‑function.
See below:

.method public static suc(I)I

.limit locals 1

.limit stack 2
iload 0
ldc 1
iadd
ireturn

.end method

The addition function is a bit more interesting since in the last line we have to
call the function recursively and “wrap around” a call to the successor function.
The code is as follows:

.method public static add(II)I

.limit locals 2

.limit stack 5
iload 0
ldc 0
if_icmpne If_else
iload 1
goto If_end

If_else:
iload 0
ldc 1
isub
iload 1
invokestatic XXX/XXX/add(II)I
invokestatic XXX/XXX/suc(I)I

If_end:
ireturn

.end method

The locals limit is 2 because add takes two arguments. The stack limit is a simple
calculation using the estimate function. We first generate code for the boolean
expression x == 0, that is loading the local variable 0 and the number 0 onto the
stack (Lines 4 and 5). If the not‑equality test fails, we continue with returning
y, which is the local variable 1 (followed by a jump to the return instruction). If
the not‑equality test succeeds, thenwe jump to the label If_else (Line 9). After

5

that label is the code for suc(add(x - 1, y)). We first have to evaluate the
argument of the suc‑function. But this means we first have to evaluate the two
arguments of the add‑function. This means loading x and 1 onto the stack and
subtracting them. Then loading y onto the stack. We can then make a recursive
call to add (its two arguments are on the stack). When this call returns we have
the result of the addition on the top of the stack and just need to call suc. Finally,
we can return the result on top of the stack as the result of the add‑function.

Tail‑Call Optimisations
Let us now briefly touch again upon the vast topic of compiler optimisations.
As an example, let’s perform tail‑call optimisations for our Fun‑language. Con‑
sider the following version of the factorial function:

def facT(n, acc) =
if n == 0 then acc
else facT(n - 1, n * acc);

The corresponding JVM code for this function is below:

1 .method public static facT(II)I
2 .limit locals 2
3 .limit stack 6
4 iload 0
5 ldc 0
6 if_icmpne If_else_2
7 iload 1
8 goto If_end_3
9 If_else_2:
10 iload 0
11 ldc 1
12 isub
13 iload 0
14 iload 1
15 imul
16 invokestatic fact/fact/facT(II)I
17 If_end_3:
18 ireturn
19 .end method

The interesting part is in Lines 10 to 16. Since the facT function is recursive, we
have also a recursive call in Line 16 in the JVM code. The problem is that be‑
fore we can make the recursive call, we need to put the two arguments, namely
n - 1 and n * acc, onto the stack. That is howwe communicate arguments to
a function. To see the the difficulty, imagine you call this function 1000 times
recursively. Each call results in some hefty overhead on the stack—ultimately
leading to a stack overflow. Well, it is possible to avoid this overhead com‑

6

pletely in many circumstances. This is what tail‑call optimisations are about.
Note that the call to facT in the program is the last instruction before the

ireturn (the label in Line 17 does not count since it is not an instruction). Also
remember, before we make the recursive call the arguments of facT need to be
put on the stack. Once we are “inside” the function, the arguments on the stack
turn into local variables. Therefore n and acc are referenced inside the function
with iload 0 and iload 1 respectively.

The idea of tail‑call optimisation is to eliminate the expensive recursive func‑
tions call and replace it by a simple jump back to the beginning of the function.
To make this work we have to change how we communicate the arguments
to the next level of the recursion/iteration: we cannot use the stack, but have
to load the arguments into the corresponding local variables. This gives the
following code

1 .method public static facT(II)I
2 .limit locals 2
3 .limit stack 6
4 facT_Start:
5 iload 0
6 ldc 0
7 if_icmpne If_else_2
8 iload 1
9 goto If_end_3
10 If_else_2:
11 iload 0
12 ldc 1
13 isub
14 iload 0
15 iload 1
16 imul
17 istore 1
18 istore 0
19 goto facT_Start
20 If_end_3:
21 ireturn
22 .end method

In Line 4 we introduce a label for indicating where the start of the function is.
Important are Lines 17 and 18 where we store the values from the stack into
local variables. When we then jump back to the beginning of the function (in
Line 19) it will look to the function as if it had been called the normal way via
values on the stack. But because of the jump, clearly, no memory on the stack
is needed. In effect we replaced a recursive call with a simple loop.

Can this optimisation always be applied? Unfortunately not. The recursive
call needs to be in tail‑call position, that is the last operation needs to be the

7

recursive call. This is for example not the case with the usual formulation of
the factorial function. Consider again the Fun‑program

def fact(n) = if n == 0 then 1
else n * fact(n - 1)

In this version of the factorial function the recursive call is not the last operation
(which can also been seen very clearly in the generated JVM code). Because of
this, the plumbing of local variables would not work and in effect the optimi‑
sation is not applicable. Very roughly speaking the tail‑position of a function is
in the two highlighted places

• if Bexp then Exp else Exp

• Exp ; Exp

To sum up, the compiler needs to recognise when a recursive call is in tail‑
position. It then can apply the tail‑call optimisations technique, which is well
known andwidely implemented in compilers for functional programming lan‑
guages.

8

