
Handout 6 (Parser Combinators)
This handout explains how parser combinatorswork and how they can be imple‑
mented in Scala. Their most distinguishing feature is that they are very easy to
implement (admittedly it is only easy in a functional programming language).
Another good point of parser combinators is that they can deal with any kind of
input as long as this input is of “sequence‑kind”, for example a string or a list of
tokens. The only two properties of the inputwe need is to be able to test when it
is empty and “sequentially” take it apart. Strings and lists fit this bill. However,
parser combinators also have their drawbacks. For example they require that
the grammar to be parsed is not left‑recursive and they are efficient only when
the grammar is unambiguous. It is the responsibility of the grammar designer
to ensure these two properties hold.

The general idea behind parser combinators is to transform the input into
sets of pairs, like so

list of tokens︸ ︷︷ ︸
input

⇒ set of (parsed part, unprocessed part)︸ ︷︷ ︸
output

Given the extended effort we have spent implementing a lexer in order to gen‑
erate lists of tokens, it might be surprising that in what follows we shall often
use strings as input, rather than lists of tokens. This is for making the explana‑
tionmore lucid and for quick examples. It does not make our previouswork on
lexers obsolete (remember they transform a string into a list of tokens). Lexers
will still be needed for building a somewhat realistic compiler.

As mentioned above, parser combinators are relatively agnostic about what
kind of input they process. In my Scala code I use the following polymorphic
types for parser combinators:

input: I output: T

That is they take as input something of type I and return a set of pairs of type
Set[(T, I)]. Since the input needs to be of “sequence‑kind”, I actually have to
often write I <% Seq[_] for the input type. This ensures the input is a subtype
of Scala sequences. The first component of the generated pairs corresponds to
what the parser combinator was able to parse from the input and the second is
the unprocessed, or leftover, part of the input (therefore the type of this unpro‑
cessed part is the same as the input). A parser combinator might return more
than one such pair; the idea is that there are potentially several ways of how to
parse the input. As a concrete example, consider the string

i f f o o t e s t b a r

Wemight have a parser combinator which tries to interpret this string as a key‑
word (if) or as an identifier (iffoo). Then the output will be the set{(

i f , f o o t e s t b a r
)

,
(
i f f o o , t e s t b a r

)}
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where the first pair means the parser could recognise if from the input and
leaves the foo testbar as unprocessed part; in the other case it could recog‑
nise iffoo and leaves testbar as unprocessed. If the parser cannot recognise
anything from the input at all, then parser combinators just return the empty
set {}. This will indicate something “went wrong”…ormore precisely, nothing
could be parsed.

Also important to note is that the output type T for the processed part can
potentially be different from the input type I in the parser. In the example
above is just happens to be the same. The reason for the difference is that in
general we are interested in transforming our input into something “differ‑
ent”…for example into a tree; or if we implement the grammar for arithmetic
expressions, wemight be interested in the actual integer number the arithmetic
expression, say 1 + 2 * 3, stands for. In this way we can use parser combi‑
nators to implement relatively easily a calculator, for instance (we shall do this
later on).

Themain driving force behindparser combinators is thatwe can easily build
parser combinators out of smaller components following very closely the struc‑
ture of a grammar. In order to implement this in a functional/object‑oriented
programming language, like Scala, we need to specify an abstract class for
parser combinators. In the abstract class we specify that I is the input type of the
parser combinator and that T is the output type. This implies that the function
parse takes an argument of type I and returns a set of type Set[(T, I)].

abstract class Parser[I, T] {
def parse(in: I) : Set[(T, I)]

def parse_all(in: I) : Set[T] =
for ((head, tail) <- parse(in); if (tail.isEmpty))

yield head
}

It is the obligation in each instance of this class to supply an implementation for
parse. From this functionwe can then “centrally” derive the function parse_all,
which just filters out all pairs whose second component is not empty (that is has
still some unprocessed part). The reason is that at the end of the parsing we are
only interested in the results where all the input has been consumed and no
unprocessed part is left over.

One of the simplest parser combinators recognises just a single character,
say c, from the beginning of strings. Its behaviour can be described as follows:

• If the head of the input string starts with a c, then return the set

{(c, tail of s)}

where tail of s is the unprocessed part of the input string.

• Otherwise return the empty set {}.
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The input type of this simple parser combinator is String and the output type
is Char. This means parse returns Set[(Char, String)]. The code in Scala is
as follows:

case class CharParser(c: Char) extends Parser[String, Char] {
def parse(in: String) =

if (in.head == c) Set((c, in.tail)) else Set()
}

You can see parse tests whether the first character of the input string in is equal
to c. If yes, then it splits the string into the recognised part c and the unpro‑
cessed part in.tail. In case in does not start with c then the parser returns
the empty set (in Scala Set()). Since this parser recognises characters and just
returns characters as the processed part, the output type of the parser is Char.

If we want to parse a list of tokens and interested in recognising a number
token, for example, we could write something like this

case object NumParser extends Parser[List[Token], Int] {
def parse(ts: List[Token]) = ts match {

case Num_token(s)::ts => Set((s.toInt, ts))
case _ => Set ()

}
}

In this parser the input is of type List[Token]. The function parse looks at
the input ts and checks whether the first token is a Num_token (let us assume
our lexer generated these tokens for numbers). But this parser does not just
return this token (and the rest of the list), like the CharParser above, rather it
extracts also the string s from the token and converts it into an integer. The
hope is that the lexer did its work well and this conversion always succeeds.
The consequence of this is that the output type for this parser is Int, not Token.
Such a conversionwould be needed ifwewant to implement a simple calculator
program, because string‑numbers need to be transformed into Int‑numbers in
order to do the calculations.

These simple parsers that just look at the input and do a simple transforma‑
tion are often called atomic parser combinators. More interesting are the parser
combinators that build larger parsers out of smaller component parsers. There
are three such parser combinators that can be implemented generically. The
alternative parser combinator is as follows: given two parsers, say, p and q, we
apply both parsers to the input (remember parsers are functions) and combine
the output (remember they are sets of pairs):

p(input) ∪ q(input)

In Scala we can implement alternative parser combinator as follows
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class AltParser[I, T]
(p: => Parser[I, T],
q: => Parser[I, T]) extends Parser[I, T] {

def parse(in: I) = p.parse(in) ++ q.parse(in)
}

The types of this parser combinator are again generic (we have I for the input
type, and T for the output type). The alternative parser builds a new parser
out of two existing parsers p and qwhich are given as arguments. Both parsers
need to be able to process input of type I and return in parse the same output
type Set[(T, I)].1 The alternative parser runs the input with the first parser
p (producing a set of pairs) and then runs the same input with q (producing
another set of pairs). The result should be then just the union of both sets,
which is the operation ++ in Scala.

The alternative parser combinator allows us to construct a parser that parses
either a character a or b using the CharParser shown above. For this we can
write

new AltParser(CharParser('a'), CharParser('b'))

Later on we will use Scala mechanism for introducing some more readable
shorthand notation for this, like "a" | "b". Let us look in detail at what this
parser combinator produces with some sample strings.

input strings output

a c d e →
{
(a , c d e )

}
b c d e →

{
(b , c d e )

}
c c d e → {}

We receive in the first two cases a successful output (that is a non‑empty set).
In each case, either a or b is in the parsed part, and cde in the unprocessed part.
Clearly this parser cannot parse anything with ccde, therefore the empty set is
returned.

A bit more interesting is the sequence parser combinator. Given two parsers,
say again, p and q, we want to apply first the input to p producing a set of pairs;
then apply q to all the unparsed parts in the pairs; and then combine the results.
Mathematically we would write something like this for the set of pairs:

{((output1, output2), u2) | (output1, u1) ∈ p(input) ∧
(output2, u2) ∈ q(u1)}

1There is an interesting detail of Scala, namely the => in front of the types of p and q. They will
prevent the evaluation of the arguments before they are used. This is often called lazy evaluation of
the arguments. We will explain this later.
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Notice that the p will first be run on the input, producing pairs of the form
(output1, u1) where the u1 stands for the unprocessed, or leftover, parts of p.
We want that q runs on all these unprocessed parts u1. Therefore these unpro‑
cessed parts are fed into the second parser q. The overall result of the sequence
parser combinator is pairs of the form ((output1, output2), u2). This means the
unprocessed part of the sequence parser combinator is the unprocessed part the
second parser q leaves as leftover. The parsed parts of the component parsers
are combined in a pair, namely (output1, output2). The reason is we want to
know what p and q were able to parse. This behaviour can be implemented in
Scala as follows:

class SeqParser[I, T, S]
(p: => Parser[I, T],
q: => Parser[I, S]) extends Parser[I, (T, S)] {

def parse(in: I) =
for ((output1, u1) <- p.parse(in);

(output2, u2) <- q.parse(u1))
yield ((output1, output2), u2)

}

This parser takes again as arguments two parsers, p and q. It implements parse
as follows: first run the parser p on the input producing a set of pairs (output1,
u1). The u1 stands for the unprocessed parts left over by p (recall that there can
be several such pairs). Let then q run on these unprocessed parts producing
again a set of pairs. The output of the sequence parser combinator is then a set
containing pairs where the first components are again pairs, namely what the
first parser could parse together with what the second parser could parse; the
second component is the unprocessed part left over after running the second
parser q. Note that the input type of the sequence parser combinator is as usual
I, but the output type is

(T, S)

Consequently, the function parse in the sequence parser combinator returns
sets of type Set[((T, S), I)]. That means we have essentially two output
types for the sequence parser combinator (packaged in a pair), because in gen‑
eral p and qmight produce different things (for examplewe recognise a number
with p and thenwith q a string corresponding to an operator). If any of the runs
of p and q fail, that is produce the empty set, then parse will also produce the
empty set.

With the shorthand notationwe shall introduce later for the sequence parser
combinator, we can write for example "a" ~ "b", which is the parser combi‑
nator that first recognises the character a from a string and then b. Let us look
again at some examples of how this parser combinator processes some strings:
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input strings output

a b c d e →
{
((a , b ), c d e )

}
b a c d e → {}
c c c d e → {}

In the first line we have a successful parse, because the string starts with ab,
which is the prefix we are looking for. But since the parsing combinator is con‑
structed as sequence of the two simple (atomic) parsers for a and b, the result
is a nested pair of the form ((a, b), cde). It is not a simple pair (ab, cde)
as one might erroneously expect. The parser returns the empty set in the other
examples, because they do not fit with what the parser is supposed to parse.

A slightly more complicated parser is ("a" | "b") ~ "c" which parses as
first character either an a or b, followed by a c. This parser produces the fol‑
lowing outputs.

input strings output

a c d e →
{
((a , c ), d e )

}
b c d e →

{
((b , c ), d e )

}
a b d e → {}

Now consider the parser ("a" ~ "b") ~ "c"which parses a, b, c in sequence.
This parser produces the following outputs.

input strings output

a b c d e →
{
(((a , b ), c ), d e )

}
a b d e → {}
b c d e → {}

The second and third example fail, because something is “missing” in the se‑
quence we are looking for. The first succeeds but notice how the results nest
with sequences: the parsed part is a nested pair of the form ((a, b), c). If
we nest the sequence parser differently, say "a" ~ ("b" ~ "c"), then also our
output pairs nest differently

input strings output

a b c d e →
{
((a , (b , c )), d e )

}
Two more examples: first consider the parser ("a" ~ "a") ~ "a" and the in‑
put aaaa:

input string output

a a a a →
{
(((a , a ), a ), a )

}
Notice again how the results nest deeper and deeper as pairs (the last a is in the
unprocessed part). To consume everything of this string we can use the parser
(("a" ~ "a") ~ "a") ~ "a". Then the output is as follows:
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input string output

a a a a →
{
((((a , a ), a ), a ), "")

}
This is an instance where the parser consumed completely the input, meaning
the unprocessed part is just the empty string. So if we called parse_all, instead
of parse, we would get back the result{

(((a , a ), a ), a )
}

where the unprocessed (empty) parts have been stripped away from the pairs;
everything where the second part was not empty has been thrown away as
well, because they represent ultimately‑unsuccessful‑parses. The main point
is that the sequence parser combinator returns pairs that can nest according to
the nesting of the component parsers.

Consider also carefully that constructing a parser such "a" | ("a" ~ "b")
will result in a typing error. The intention with this parser is that we want to
parse either an a, or an a followed by a b. However, the first parser has as output
type a single character (recall the type of CharParser), but the second parser
produces a pair of characters as output. The alternative parser is required to
have both component parsers to have the same type—the reason is thatwe need
to be able to build the union of two sets, which requires in Scala that the sets
have the same type. Since they are not in this case, there is a typing error. We
will see later how we can build this parser without the typing error.

The next parser combinator, called semantic action, does not actually com‑
bine two smaller parsers, but applies a function to the result of a parser. It is
implemented in Scala as follows

class FunParser[I, T, S]
(p: => Parser[I, T],
f: T => S) extends Parser[I, S] {

def parse(in: I) =
for ((head, tail) <- p.parse(in)) yield (f(head), tail)

}

This parser combinator takes a parser p (with input type I and output type T)
as one argument but also a function f (with type T => S). The parser p pro‑
duces sets of type Set[(T, I)]. The semantic action combinator then applies
the function f to all the ‘processed’ parser outputs. Since this function is of
type T => S, we obtain a parser with output type S. Again Scala lets us intro‑
duce some shorthand notation for this parser combinator. Therefore we will
write short p ==> f for it.

What are semantic actions good for? Well, they allow you to transform the
parsed input into datastructures you can use for further processing. A sim‑
ple (contrived) example would be to transform parsed characters into ASCII
numbers. Suppose we define a function f (from characters to Ints) and use a
CharParser for parsing the character c.
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val f = (c: Char) => c.toInt
val c = new CharParser('c')

We then can run the following two parsers on the input cbd:

c.parse("cbd")
(c ==> f).parse("cbd")

In the first line we obtain the expected result Set(('c', "bd")), whereas the
second produces Set((99, "bd"))—the character has been transformed into
an ASCII number.

A slightly less contrived example is about parsing numbers (recall NumParser
above). However, we want to do this here for strings, not for tokens. For this
assume we have the following (atomic) RegexParser.

import scala.util.matching.Regex

case class RegexParser(reg: Regex) extends Parser[String, String] {
def parse(in: String) = reg.findPrefixMatchOf(in) match {

case None => Set()
case Some(m) => Set((m.matched, m.after.toString))

}
}

This parser takes a regex as argument and splits up a string into a prefix and
the rest according to this regex (reg.findPrefixMatchOf generates a match—
in the successful case—and the corresponding strings can be extracted with
matched and after). The input and output type for this parser is String. Using
RegexParserwe can define a NumParser for Strings to Int as follows:

val NumParser = RegexParser("[0-9]+".r)

This parser will recognise a number at the beginning of a string. For example

NumParser.parse("123abc")

produces Set((123,abc)). The problem is that 123 is still a string (the required
double‑quotes are not printed by Scala). We want to convert this string into the
corresponding Int. We can do this as follows using a semantic action

(NumParser ==> (s => s.toInt)).parse("123abc")

The function in the semantic action converts a string into an Int. Now parse
generates Set((123,abc)), but this time 123 is an Int. Let us come back to se‑
mantic actions when we are going to implement actual context‑free grammars.
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Shorthand notation for parser combinators

Before we proceed, let us just explain the shorthand notation for parser combi‑
nators. Like for regular expressions, the shorthand notation will make our life
much easier when writing actual parsers. We can define some implicits which
allow us to write

p | q alternative parser
p ~ q sequence parser
p ==> f semantic action parser

as well as to use plain strings for specifying simple string parsers.
The idea is that this shorthand notation allows us to easily translate context‑

free grammars into code. For example recall our context‑free grammar for
palindromes:

Pal ::= a · Pal · a | b · Pal · b | a | b

| ϵ

Each alternative in this grammar translates into an alternative parser combina‑
tor. The · can be translated to a sequence parser combinator. The parsers for a,
b and ϵ can be simply written as "a", "b" and "".

How to build parsers using parser combinators?

The beauty of parser combinators is the ease with which they can be imple‑
mented and how easy it is to translate context‑free grammars into code (though
the grammars need to be non‑left‑recursive). To demonstrate this consider
again the grammar for palindromes from above. The first idea would be to
translate it into the following code

lazy val Pal : Parser[String, String] =
(("a" ~ Pal ~ "a") | ("b" ~ Pal ~ "b") | "a" | "b" | "")

Unfortunately, this does not quite work yet as it produces a typing error. The
reason is that the parsers "a", "b" and "" all produce strings as output type
and therefore can be put into an alternative ...| "a" | "b" | "". But both
sequence parsers "a" ~ Pal ~ "a" and "b" ~ Pal ~ "b" produce pairs of the
form

(((a‑part, Pal‑part), a‑part), unprocessed part)

That is how the sequence parser combinator nests results when ~ is used be‑
tween two components. The solution is to use a semantic action that “flattens”
these pairs and appends the corresponding strings, like
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lazy val Pal : Parser[String, String] =
(("a" ~ Pal ~ "a") ==> { case ((x, y), z) => x + y + z } |
("b" ~ Pal ~ "b") ==> { case ((x, y), z) => x + y + z } |
"a" | "b" | "")

How does this work? Well, recall again what the pairs look like for the parser
"a" ~ Pal ~ "a". The pattern in the semantic action matches the nested pairs
(the x with the a‑part and so on). Unfortunately when we have such nested
pairs, Scala requires us to define the function using the case‑syntax

{ case ((x, y), z) => ... }

If we have more sequence parser combinators or have them differently nested,
then the pattern in the semantic action needs to be adjusted accordingly. The
action we implement above is to concatenate all three strings, which means
after the semantic action is applied the output type of the parser is String,
which means it fits with the alternative parsers ...| "a" | "b" | "".

If we run the parser above with Pal.parse_all("abaaaba") we obtain as
result the Set(abaaaba), which indicates that the string is a palindrome (an
empty set would mean something is wrong). But also notice what the interme‑
diate results are generated by Pal.parse("abaaaba")

Set((abaaaba,""),(aba,aaba), (a,baaaba), ("",abaaaba))

That there are more than one output might be slightly unexpected, but can
be explained as follows: the pairs represent all possible (partial) parses of the
string "abaaaba". The first pair above corresponds to a complete parse (all out‑
put is consumed) and this is what Pal.parse_all returns. The second pair is
a small “sub‑palindrome” that can also be parsed, but the parse fails with the
rest aaba, which is therefore left as unprocessed. The third one is an attempt
to parse the whole string with the single‑character parser a. That of course
only partially succeeds, by leaving "baaaba" as the unprocessed part. Finally,
since we allow the empty string to be a palindrome we also obtain the last pair,
where actually nothing is consumed from the input string. While all this works
as intended, we need to be careful with this (especially with including the ""
parser in our grammar): if during parsing the set of parsing attempts gets too
big, then the parsing process can become very slow as the potential candidates
for applying rules can snowball.

Important is also to note is that wemust define the Pal‑parser as a lazy value
in Scala. Look again at the code: Pal occurs on the right‑hand side of the defi‑
nition. If we had just written

val Pal : Parser[String, String] = ...rhs...
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then Scala before making this assignment to Pal attempts to find out what the
expression on the right‑hand side evaluates to. This is straightforward in case
of simple expressions 2 + 3, but the expression above contains Pal in the right‑
hand side. Without lazy it would try to evaluatewhat Pal evaluates to and start
a new recursion, which means it falls into an infinite loop. The definition of
Pal is recursive and the lazy key‑word prevents it from being fully evaluated.
Therefore whenever we want to define a recursive parser we have to write

lazy val SomeParser : Parser[...,...] = ...rhs...

Thatwas not necessary for our atomic parsers, like RegexParser or CharParser,
because they are not recursive. Note that this is also the reason why we had to
write

class AltParser[I, T]
(p: => Parser[I, T],
q: => Parser[I, T]) extends Parser[I, T] {...}

class SeqParser[I, T, S]
(p: => Parser[I, T],
q: => Parser[I, S]) extends Parser[I, (T, S)] {...}

where the => in front of the argument types for p and q prevent Scala from
evaluating the arguments. Normally, Scala would first evaluate what kind of
parsers p and q are, and only then generate the alternative parser combinator,
respectively sequence parser combinator. Since the arguments can be recursive
parsers, such as Pal, this would lead again to an infinite loop.

As a final example in this section, let us consider the grammar for well‑
nested parentheses:

P ::= (·P·) · P | ϵ

Let us assume we want to not just recognise strings of well‑nested parentheses
but also transform round parentheses into curly braces. We can do this by using
a semantic action:

lazy val P : Parser[String, String] =
"(" ~ P ~ ")" ~ P ==> { case (((_,x),_),y) => "{" + x + "}" + y } | ""

Here we define a function where which ignores the parentheses in the pairs,
but replaces them in the right places with curly braces when assembling the
new string in the right‑hand side. If we run P.parse_all("(((()()))())")
we obtain Set({{{{}{}}}{}}) as expected.
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Implementing an Interpreter

The first step before implementing an interpreter for a full‑blown language is
to implement a simple calculator for arithmetic expressions. Suppose our arith‑
metic expressions are given by the grammar:

E ::= E ·+ · E
| E · − · E
| E · ∗ · E
| (·E·)
| Number

Naturally we want to implement the grammar in such a way that we can calcu‑
late what the result of, for example, 4*2+3 is—we are interested in an Int rather
than a string. This means every component parser needs to have as output type
Int andwhenwe assemble the intermediate results, strings like "+", "*" and so
on, need to be translated into the appropriate Scala operation of adding, mul‑
tiplying and so on. Being inspired by the parser for well‑nested parentheses
above and ignoring the fact that we want ∗ to take precedence over + and −,
we might want to write something like

lazy val E: Parser[String, Int] =
(E ~ "+" ~ E ==> { case ((x, y), z) => x + z} |
E ~ "-" ~ E ==> { case ((x, y), z) => x - z} |
E ~ "*" ~ E ==> { case ((x, y), z) => x * z} |
"(" ~ E ~ ")" ==> { case ((x, y), z) => y} |
NumParserInt)

Consider again carefully how the semantic actions pick out the correct argu‑
ments for the calculation. In case of plus, we need x and z, because they corre‑
spond to the results of the component parser E. We can just add x + z in order
to obtain an Int because the output type of E is Int. Similarly with subtrac‑
tion and multiplication. In contrast in the fourth clause we need to return y,
because it is the result enclosed inside the parentheses. The information about
parentheses, roughly speaking, we just throw away.

So far so good. The problem arises when we try to call parse_all with the
expression "1+2+3". Lets try it

E.parse_all("1+2+3")

…and we wait and wait and …still wait. What is the problem? Actually, the
parser just fell into an infinite loop! The reason is that the above grammar is
left‑recursive and recall that our parser combinators cannot deal with such left‑
recursive grammars. Fortunately, every left‑recursive context‑free grammar
can be transformed into a non‑left‑recursive grammars that still recognises the
same strings. This allows us to design the following grammar
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E ::= T ·+ · E | T · − · E | T
T ::= F · ∗ · T | F
F ::= (·E·) | Number

Recall what left‑recursive means from Handout 5 and make sure you see why
this grammar is non left‑recursive. This version of the grammar also deals with
the fact that ∗ should have a higher precedence. This does not affect which
strings this grammar can recognise, but in which order we are going to eval‑
uate any arithmetic expression. We can translate this grammar into parsing
combinators as follows:

lazy val E: Parser[String, Int] =
(T ~ "+" ~ E) ==> { case ((x, y), z) => x + z } |
(T ~ "-" ~ E) ==> { case ((x, y), z) => x - z } | T

lazy val T: Parser[String, Int] =
(F ~ "*" ~ T) ==> { case ((x, y), z) => x * z } | F

lazy val F: Parser[String, Int] =
("(" ~ E ~ ")") ==> { case ((x, y), z) => y } | NumParserInt

Let us try out some examples:

input strings output of parse_all

1 + 2 + 3 → Set(6)
4 * 2 + 3 → Set(11)

4 * ( 2 + 3 ) → Set(20)
( 4 ) * ( ( 2 + 3 ) ) → Set(20)

4 / 2 + 3 → Set()
1 + 2 + 3 → Set()

Note that we call parse_all, not parse. The examples should be quite self‑
explanatory. The last two example do not produce any integer result because
our parser does not definewhat to do in case of division (could be easily added),
but also has no idea what to do with whitespaces. To deal with them is the task
of the lexer! Yes, we can deal with them inside the grammar, but that would
render many grammars becoming unintelligible, including this one.2

2If you think an easy solution is to extend the notion of what a number should be, then think
again—you still would have to deal with cases like ( ( 2 + 3 ) ) . Just think of the mess
you would have in a grammar for a full‑blown language where there are numerous such cases.
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