
Handout 1
The purpose of a compiler is to transform a program a human can read and
write into code themachine can run as fast as possible. Developing a compiler is
an old craft going back to 1952with the first compilerwritten byGraceHopper.1
Why studying compilers nowadays? An interesting answer is given by John
Regher in his compiler blog:2

“We can start off with a couple of observations about the role of compil‑
ers. First, hardware is getting weirder rather than getting clocked faster:
almost all processors are multicores and it looks like there is increasing
asymmetry in resources across cores. Processors come with vector units,
crypto accelerators, bit twiddling instructions, and lots of features to make
virtualization and concurrency work. We have DSPs, GPUs, big.little,
and Xeon Phi. This is only scratching the surface. Second, we’re getting
tired of low‑level languages and their associated security disasters, wewant
to write new code, to whatever extent possible, in safer, higher‑level lan‑
guages. Compilers are caught right in the middle of these opposing trends:
one of their main jobs is to help bridge the large and growing gap between
increasingly high‑level languages and increasingly wacky platforms. It’s
effectively a perpetual employment act for solid compiler hackers.”

So the goal of this module is to become a solid (beginner) compiler hacker and
as part of the coursework to implement a small compiler for a very small pro‑
gramming language.

The first part of the module is about the problem of text processing, which
is needed for compilers, but also for dictionaries, DNA‑data, spam‑filters and
so on. When looking for a particular string, say "foobar", in a large text we
can use the Knuth‑Morris‑Pratt algorithm, which is currently the most efficient
general string search algorithm. But often we do not just look for a particular
string, but for string patterns. For example, in program codeweneed to identify
what are the keywords (if, then, while, for, etc) and what are the identifiers
(variable names). A pattern for identifiers could be stated as: they start with a
letter, followed by zero or more letters, numbers and underscores.

Often we also face the problem that we are given a string, for example some
user input, and we want to know whether it matches a particular pattern—is
it an email address, for example. In this way we can exclude user input that
would otherwise have nasty effects on our program (crashing it or making it
go into an infinite loop, if not worse). This kind of “inspecting” mechanism
is also implemented in popular network security tools such as Snort and Bro.3
They scan incoming network traffic for computer viruses or malicious packets.

© Christian Urban, King’s College London, 2014, 2015, 2016, 2017, 2018, 2019, 2020
1Who many years ago was invited on a talk show hosted by David Letterman, see https://

youtu.be/3N_ywhx6_K0?t=31.
2http://blog.regehr.org/archives/1419
3www.snort.org, www.bro.org

1

https://youtu.be/3N_ywhx6_K0?t=31
https://youtu.be/3N_ywhx6_K0?t=31
http://blog.regehr.org/archives/1419
www.snort.org
www.bro.org

Similarly filtering out spamusually involves looking for some signature (essen‑
tially a string pattern). The point is that the fast Knuth‑Morris‑Pratt algorithm
for strings is not good enough for such string patterns.

Regular expressions help with conveniently specifying such patterns. The
idea behind regular expressions is that they are a simple method for describ‑
ing languages (or sets of strings)…at least languages we are interested in in
computer science. For example there is no convenient regular expression for
describing the English language short of enumerating all English words. But
they seem useful for describing for example simple email addresses.4 Consider
the following regular expression

[a-z0-9_.-]+ @ [a-z0-9.-]+ . [a-z.]{2,6} (1)

where the first part, the user name, matches one ormore lowercase letters (a-z),
digits (0-9), underscores, dots and hyphens. The + at the end of the brackets
ensures the “one or more”. Then comes the email @‑sign, followed by the do‑
main name which must be one or more lowercase letters, digits, underscores,
dots or hyphens (but no underscores). Finally there must be a dot followed
by the toplevel domain. This toplevel domain must be 2 to 6 lowercase letters
including the dot. Example strings which follow this pattern are:

niceandsimple@example.org
very.common@example.co.uk
a.little.lengthy.but.fine@dept.example.ac.uk
other.email-with-dash@example.edu

But for example the following two do not

user@localserver
disposable.style.email.with+symbol@example.com

according to the regular expression we specified in line (??) above. Whether
this is intended or not is a different question (the second email above is actu‑
ally an acceptable email address according to the RFC 5322 standard for email
addresses).

As mentioned above, identifiers, or variables, in program code are often
required to satisfy the constraints that they start with a letter and then can be
followed by zero or more letters or numbers and also can include underscores,
but not as the first character. Such identifiers can be recognisedwith the regular
expression

[a-zA-Z] [a-zA-Z0-9_]*

Possible identifiers that match this regular expression are x, foo, foo_bar_1,
A_very_42_long_object_name, but not _i and also not 4you.

Many programming languages offer libraries that can be used to validate
such strings against regular expressions. Also there are some common, and I

4See “8 Regular Expressions You Should Know” http://goo.gl/5LoVX7

2

http://goo.gl/5LoVX7

am sure very familiar, ways of how to construct regular expressions. For exam‑
ple in Scala we have a library implementing the following regular expressions:

re* matches 0 or more occurrences of preceding expression
re+ matches 1 or more occurrences of preceding expression
re? matches 0 or 1 occurrence of preceding expression
re{n} matches exactly n number of occurrences of preceding ex‑

pression
re{n,m} matches at least n and at most m occurrences of the preced‑

ing expression
[...] matches any single character inside the brackets
[^...] matches any single character not inside the brackets
...-... character ranges
\d matches digits; equivalent to [0-9]
. matches every character except newline
(re) groups regular expressions and remembers matched text

With this table you can figure out the purpose of the regular expressions in the
web‑crawlers shown Figures ?? and ??. In Figure ??, however, be careful with
the regular expression for http‑addresses in Line ??. It is intended to be

"https?://[^"]*"

specifying that http‑addresses need to start with a double quote, then comes
http followed by an optional s and so on…until the closing double quote comes
at the end of the address. Normally wewould have to escape the double quotes
in order to make sure we interpret the double quote as character, not as double
quote for a string. But Scala’s trickwith triple quotes allows us to omit this kind
of ugly escaping. As a result we can just write:

""""https?://[^"]*"""".r

The convention in Scala is that .r converts a string into a regular expression. I
leave it to you to ponderwhether this regular expression really captures all pos‑
sible web‑addresses. If you need a quick recap about regular expressions and
how thematch strings, here is a quick video: https://youtu.be/bgBWp9EIlMM.

Why Study Regular Expressions?
Regular expressions were introduced by Kleene in the 1950ies and they have
been object of intense study since then. They are nowadays pretty much ubiq‑
uitous in computer science. There are many libraries implementing regular
expressions. I am sure you have come across them before (remember the PRA
or PEP modules?).

Why on earth then is there any interest in studying them again in depth in
this module? Well, one answer is in the following two graphs about regular
expression matching in Python, Ruby, JavaScript and Java (Version 8).

3

https://youtu.be/bgBWp9EIlMM

5 10 15 20 25 30
0
5

10
15
20
25
30

n

tim
e
in
se
cs

Graph: (a*)* b and strings a . . . a︸ ︷︷ ︸
n

Python
Java 8
JavaScript

5 10 15 20 25 30
0
5

10
15
20
25
30

n

tim
e
in
se
cs

Graph: a?{n} a{n} and strings a . . . a︸ ︷︷ ︸
n

Python
Ruby

This first graph shows that Python, JavaScript and Java 8 need approximately 30
seconds to find out that the regular expression (a*)* bdoes notmatch strings of
28 as. Similarly, the second shows that Python and Ruby need approximately
29 seconds for finding out whether a string of 28 as matches the regular ex‑
pression a?{28} a{28}.5 Admittedly, these regular expressions are carefully
chosen to exhibit this exponential behaviour, but similar ones occur more often
than one wants in “real life”. For example, on 20 July 2016 a similar regular
expression brought the webpage Stack Exchange to its knees:

http://stackstatus.net/post/147710624694/
outage-postmortem-july-20-2016

I can also highly recommend a cool webtalk from an engineer from Stack Ex‑
change on the same subject:

https://vimeo.com/112065252

A similar problem also occurred in the Atom editor:

http://davidvgalbraith.com/how-i-fixed-atom/

and also when somebody tried to match web‑addresses using a relatively sim‑
ple regular expression

https://www.tutorialdocs.com/article/regex-trap.html

Finally, on 2 July 2019 Cloudflare had a global outage because of a regular ex‑
pression (they had no outage for the last 6 years). What happened is nicely
explained in the blog:

https://blog.cloudflare.com/
details-of-the-cloudflare-outage-on-july-2-2019

5In this example Ruby uses actually the slightly different regular expression
a?a?a?...a?a?aaa...aa, where the a? and a each occur n times. More such test cases can be found
at https://www.owasp.org/index.php/Regular_expression_Denial_of_Service_-_ReDoS.

4

http://stackexchange.com
http://stackstatus.net/post/147710624694/outage-postmortem-july-20-2016
http://stackstatus.net/post/147710624694/outage-postmortem-july-20-2016
https://vimeo.com/112065252
http://davidvgalbraith.com/how-i-fixed-atom/
https://www.tutorialdocs.com/article/regex-trap.html
https://blog.cloudflare.com/details-of-the-cloudflare-outage-on-july-2-2019
https://blog.cloudflare.com/details-of-the-cloudflare-outage-on-july-2-2019
https://www.owasp.org/index.php/Regular_expression_Denial_of_Service_-_ReDoS

Such troublesome regular expressions are sometimes called evil regular ex‑
pressions because they have the potential to make regular expression matching
engines to topple over, like in Python, Ruby, JavaScript and Java 8. This “top‑
pling over” is also sometimes called catastrophic backtracking. I have also seen
the term eternal matching used for this. The problem with evil regular expres‑
sions and catastrophic backtracking is that they can have some serious conse‑
quences, for example, if you use them in your web‑application. The reason
is that hackers can look for these instances where the matching engine behaves
badly and thenmount a nice DoS‑attack against your application. These attacks
are already have their own name: Regular Expression Denial of Service Attacks
(ReDoS).

It will be instructive to look behind the “scenes” to find out why Python and
Ruby (and others) behave so badly when matching strings with evil regular
expressions. But we will also look at a relatively simple algorithm that solves
this problem much better than Python and Ruby do…actually it will be two
versions of the algorithm: the first one will be able in the example a?{n} a{n}
to process strings of approximately 1,100 as in 23 seconds, while the second
version will even be able to process up to 11,000(!) in 5 seconds, see the graph
below:

0 3,000 6,000 9,000 12,000
0
5

10
15
20
25
30

n

tim
e
in
se
cs

Graph: a?{n} a{n} and strings a . . . a︸ ︷︷ ︸
n

Our Algorithm V1
Our Algorithm V2

And in the case of the regular expression (a*)* b and strings of as we will beat
Java 8 by factor of approximately 1,000,000 (note the scale on the x‑axis).

0 1 2 3 4 5

·106

0
5

10
15
20
25
30

n

tim
e
in
se
cs

Graph: (a*)* b and strings a . . . a︸ ︷︷ ︸
n

Our Algorithm V2

5

You might have wondered above why I looked at the (now) old Java 8: the
reason is that Java 9 and later versions are a bit better, but we will still beat
them hands down with our regex matcher.

Basic Regular Expressions
The regular expressions shown earlier for Scala, we will call extended regular
expressions. The ones we will mainly study in this module are basic regular ex‑
pressions, which by convention we will just call regular expressions, if it is clear
what we mean. The attraction of (basic) regular expressions is that many fea‑
tures of the extended ones are just syntactic sugar. (Basic) regular expressions
are defined by the following grammar:

r ::= 0 null language
| 1 empty string / "" / []
| c single character
| r1 + r2 alternative / choice
| r1 · r2 sequence
| r∗ star (zero or more)

Because we overload our notation, there are some subtleties you should be
aware of. When regular expressions are referred to, then 0 (in bold font) does
not stand for the number zero: rather it is a particular pattern that does not
match any string. Similarly, in the context of regular expressions, 1 does not
stand for the number one but for a regular expression that matches the empty
string. The letter c stands for any character from the alphabet at hand. Again in
the context of regular expressions, it is a particular pattern that can match the
specified character. You should also be careful with our overloading of the star:
assuming you have read the handout about our basic mathematical notation,
you will see that in the context of languages (sets of strings) the star stands for
an operation on languages. Here r∗ stands for a regular expression, which is
different from the operation on sets is defined as

A⋆
def
=

⋃
0≤n

An

We will use parentheses to disambiguate regular expressions. Parentheses
are not really part of a regular expression, and indeed we do not need them in
our code because there the tree structure of regular expressions is always clear.
But for writing them down in a more mathematical fashion, parentheses will
be helpful. For example we will write (r1 + r2)

∗, which is different from, say
r1 + (r2)

∗. The former means roughly zero or more times r1 or r2, while the
latter means r1, or zero or more times r2. This will turn out to be two different
patterns, which match in general different strings. We should also write (r1 +
r2)+ r3, which is different from the regular expression r1 +(r2 + r3), but in case
of + and · we actually do not care about the order and just write r1 + r2 + r3,

6

or r1 · r2 · r3, respectively. The reasons for this carelessness will become clear
shortly.

In the literature you will often find that the choice r1 + r2 is written as r1 | r2
or r1 || r2. Also, often our 0 and 1 are written ∅ and ϵ, respectively. Following
the convention in the literature, we will often omit the ·. This is to make some
concrete regular expressions more readable. For example the regular expres‑
sion for email addresses shown in (??) would fully expanded look like

[...]+ · @ · [...]+ · . · [...]{2,6}

which is much less readable than the regular expression in (??). Similarly for
the regular expression that matches the string hello we should write

h · e · l · l · o

but often just write hello.
If you prefer to think in terms of the implementation of regular expressions

in Scala, the constructors and classes relate as follows6

0 7→ ZERO
1 7→ ONE
c 7→ CHAR(c)

r1 + r2 7→ ALT(r1, r2)
r1 · r2 7→ SEQ(r1, r2)

r∗ 7→ STAR(r)

Asource of confusionmight arise from the fact thatwe use the term basic reg‑
ular expression for the regular expressions used in “theory” and defined above,
and extended regular expression for the ones used in “practice”, for example in
Scala. If runtime is not an issue, then the latter can be seen as syntactic sugar of
the former. For example we could replace

r+ 7→ r · r∗

r? 7→ 1+ r
\d 7→ 0 + 1 + 2 + . . . + 9

[a ‑ z] 7→ a + b + . . . + z

The Meaning of Regular Expressions
So far we have only considered informally what the meaning of a regular ex‑
pression is. This is not good enough for specifications of what algorithms are
supposed to do or which problems they are supposed to solve.

To define the meaning of a regular expression we will associate with every
regular expression a language, or set of strings. This language contains all the
strings the regular expression is supposed to match. To understand what is

6More about Scala is in the handout about A Crash‑Course on Scala.

7

going on here it is crucial that you have read the handout about basic mathe‑
matical notations.

Themeaning of a regular expression can be defined by a recursive function
called L (for language), which is defined as follows

L(0) def
= {}

L(1) def
= {[]}

L(c) def
= {”c”} or equivalently def

= {[c]}
L(r1 + r2)

def
= L(r1) ∪ L(r2)

L(r1 · r2)
def
= L(r1)@ L(r2)

L(r∗) def
= (L(r))⋆

As a result we can now precisely state what the meaning, for example, of the
regular expression h · e · l · l · o is, namely

L(h · e · l · l · o) = {”hello”}

This is expected because this regular expression is only supposed to match
the “hello”‑string. Similarly if we have the choice‑regular‑expression a + b, its
meaning is

L(a + b) = {”a”, ”b”}

You can now also see why we do not make a difference between the different
regular expressions (r1 + r2) + r3 and r1 + (r2 + r3)…they are not the same
regular expression, but they have the same meaning. For example you can do
the following calculation which shows they have the same meaning:

L((r1 + r2) + r3) = L(r1 + r2) ∪ L(r3)

= L(r1) ∪ L(r2) ∪ L(r3)

= L(r1) ∪ L(r2 + r3)

= L(r1 + (r2 + r3))

The point of the definition of L is that we can use it to precisely specifywhen
a string s is matched by a regular expression r, namely if and only if s ∈ L(r).
In fact we will write a program match that takes any string s and any regular
expression r as arguments and returns yes, if s ∈ L(r) and no, if s 6∈ L(r). We
leave this for the next lecture.

There is one more feature of regular expressions that is worth mentioning.
Given some strings, there are in generalmany different regular expressions that
can recognise these strings. This is obvious with the regular expression a + b
which canmatch the strings a and b. But also the regular expression b+ awould
match the same strings. However, sometimes it is not so obvious whether two
regular expressions match the same strings: for example do r∗ and 1 + r · r∗

8

match the same strings? What about 0∗ and 1∗? This suggests the following
relation between equivalent regular expressions:

r1 ≡ r2
def
= L(r1) = L(r2)

That means two regular expressions are said to be equivalent if they match the
same set of strings. That is their meanings is the same. Therefore we do not
really distinguish between the different regular expression (r1 + r2) + r3 and
r1 + (r2 + r3), because they are equivalent. I leave you to the question whether

0∗ ≡ 1∗

holds or not? Such equivalences will be important for our matching algorithm,
because we can use them to simplify regular expressions, which will mean we
can speed up the calculations.

My Fascination for Regular Expressions
Upuntil a few years ago Iwas not really interested in regular expressions. They
have been studied for the last 60 years (by smarter people than me)—surely
nothing new can be found out about them. I even have the vague recollection
that I did not quite understand them during my undergraduate study. If I re‑
member correctly,7 I got utterly confused about 1 (which my lecturer wrote as
ϵ) and the empty string (which he also wrote as ϵ).8 Since then, I have used
regular expressions for implementing lexers and parsers as I have always been
interested in all kinds of programming languages and compilers, which invari‑
ably need regular expressions in some form or shape.

To understand my fascination nowadayswith regular expressions, you need
to know that my main scientific interest for the last 17 years has been with the‑
orem provers. I am a core developer of one of them.9 Theorem provers are
systems in which you can formally reason about mathematical concepts, but
also about programs. In this way theorem provers can help with the menacing
problem of writing bug‑free code. Theorem provers have proved already their
value in a number of cases (even in terms of hard cash), but they are still clunky
and difficult to use by average programmers.

Anyway, in about 2011 I came across the notion of derivatives of regular
expressions. This notion allows one to do almost all calculations with regu‑
lar expressions on the level of regular expressions, not needing any automata
(you will see we only touch briefly on automata in lecture 3). Automata are
usually the main object of study in formal language courses. The avoidance of
automata is crucial for me because automata are graphs and it is rather difficult
to reason about graphs in theorem provers. In contrast, reasoning about reg‑
ular expressions is easy‑peasy in theorem provers. Is this important? I think

7That was really a long time ago.
8Obviously the lecturer must have been bad ;o)
9http://isabelle.in.tum.de

9

http://isabelle.in.tum.de

yes, because according to Kuklewicz nearly all POSIX‑based regular expression
matchers are buggy.10 With my PhD student Fahad Ausaf I proved the correct‑
ness for one such matcher that was proposed by Sulzmann and Lu in 2014.11
Hopefully we can prove that the machine code(!) that implements this code ef‑
ficiently is correct also. Writing programs in this way does not leave any room
for potential errors or bugs. How nice!

What also helped with my fascination with regular expressions is that we
could indeed find out new things about them that have surprised some ex‑
perts. Togetherwith two colleagues fromChina, I was able to prove theMyhill‑
Nerode theorem by only using regular expressions and the notion of deriva‑
tives. Earlier versions of this theoremused always automata in the proof. Using
this theoremwe can show that regular languages are closed under complemen‑
tation, something which Gasarch in his blog12 assumed can only be shown via
automata. So even somebody who has written a 700+‑page book13 on regular
expressions did not know better. Well, we showed it can also be done with reg‑
ular expressions only.14 What a feelingwhen you are an outsider to the subject!

To conclude: Despite my early ignorance about regular expressions, I find
them now extremely interesting. They have practical importance (remember
the shocking runtime of the regular expression matchers in Python, Ruby and
Java in some instances and the problems in Stack Exchange and the Atom ed‑
itor). They are used in tools like Snort and Bro in order to monitor network
traffic. They have a beautiful mathematical theory behind them, which can
be sometimes quite deep and which sometimes contains hidden snares. People
who are not very familiar with themathematical background of regular expres‑
sions get them consistently wrong (this is surprising given they are a supposed
to be core skill for computer scientists). The hope is that we can do better in
the future—for example by proving that the algorithms actually satisfy their
specification and that the corresponding implementations do not contain any
bugs. We are close, but not yet quite there.

Notwithstanding my fascination, I am also happy to admit that regular ex‑
pressions have their shortcomings. There are some well‑known “theoretical”
shortcomings, for example recognising strings of the form anbn is not possi‑
ble with regular expressions. This means for example if we try to recognise
whether parentheses are well‑nested in an expression is impossible with (ba‑
sic) regular expressions. I am not so bothered by these shortcomings. What
I am bothered about is when regular expressions are in the way of practical
programming. For example, it turns out that the regular expression for email
addresses shown in (??) is hopelessly inadequate for recognising all of them (de‑
spite being touted as something every computer scientist should know about).
The W3 Consortium (which standardises the Web) proposes to use the follow‑
ing, already more complicated regular expressions for email addresses:

10http://www.haskell.org/haskellwiki/Regex_Posix
11http://goo.gl/bz0eHp
12http://goo.gl/2R11Fw
13http://goo.gl/fD0eHx
14http://nms.kcl.ac.uk/christian.urban/Publications/posix.pdf

10

http://www.haskell.org/haskellwiki/Regex_Posix
http://goo.gl/bz0eHp
http://goo.gl/2R11Fw
http://goo.gl/fD0eHx
http://nms.kcl.ac.uk/christian.urban/Publications/posix.pdf

[a-zA-Z0-9.!#$%&'*+/=?^_`{|}~-]+@[a-zA-Z0-9-]+(?:\.[a-zA-Z0-9-]+)*

But they admit that by using this regular expression they wilfully violate the
RFC 5322 standard, which specifies the syntax of email addresses. With their
proposed regular expression they are too strict in some cases and too lax in
others. Not a good situation to be in. A regular expression that is claimed to be
closer to the standard is shown in Figure ??. Whether this claim is true or not, I
would not know—the only thing I can say about this regular expression is it is
a monstrosity. However, this might actually be an argument against the RFC
standard, rather than against regular expressions. A similar argument is made
in

http:
//elliot.land/post/its-impossible-to-validate-an-email-address

which explains some of the crazier parts of email addresses. Still it is good
to know that some tasks in text processing just cannot be achieved by using
regular expressions. But for what we want to use them (lexing) they are pretty
good.

Finally there is a joke about regular expressions:

“Sometimes you have a programming problem and it seems like the best
solution is to use regular expressions; now you have two problems.”

11

http://elliot.land/post/its-impossible-to-validate-an-email-address
http://elliot.land/post/its-impossible-to-validate-an-email-address

1 // A crawler which checks whether there are
2 // dead links in web-pages
3

4 import io.Source
5 import scala.util.matching.Regex
6 import scala.util._
7

8 // gets the first 10K of a web-page
9 def get_page(url: String) : String = {
10 Try(Source.fromURL(url)("ISO-8859-1").take(10000).mkString).
11 getOrElse { println(s" Problem with: $url"); ""}
12 }
13

14 // e.g. get_page("https://nms.kcl.ac.uk/christiana.urban/")
15

16 // regex for URLs
17 val http_pattern = """"https?://[^"]*"""".r
18

19 // drops the first and last characters from a string
20 def unquote(s: String) = s.drop(1).dropRight(1)
21

22 def get_all_URLs(page: String) : Set[String] =
23 http_pattern.findAllIn(page).map(unquote).toSet
24

25 // a very naive version of crawl - searches until a given
26 // depth, visits pages potentially more than once
27 def crawl(url: String, n: Int) : Unit = {
28 if (n == 0) ()
29 else {
30 println(s"Visiting: $n $url")
31 for (u <- get_all_URLs(get_page(url))) crawl(u, n - 1)
32 }
33 }
34

35 // some starting URLs for the crawler
36

37 val startURL = """https://nms.kcl.ac.uk/christian.urban/"""
38 //val startURL = """https://nms.kcl.ac.uk/luc.moreau/"""
39

40 crawl(startURL , 2)

Figure 1: The Scala code for a simple web‑crawler that checks for broken links
in web‑pages. It uses the regular expression http_pattern in Line ?? for recog‑
nising URL‑addresses. It finds all links using the library function findAllIn in
Line ?? (this function is part of Scala’s regular expression library).

12

1 // This version of the crawler that also
2 // "harvests" email addresses from webpages
3

4 import io.Source
5 import scala.util.matching.Regex
6 import scala.util._
7

8 def get_page(url: String) : String = {
9 Try(Source.fromURL(url)("ISO-8859-1").take(10000).mkString).
10 getOrElse { println(s" Problem with: $url"); ""}
11 }
12

13 // regexes for URLs, for "my" domain and for email addresses
14 val http_pattern = """"https?://[^"]*"""".r
15 val email_pattern = """([a-z0-9_\.-]+)@([\da-z\.-]+)\.([a-z\.]{2,6})""".r
16

17 def unquote(s: String) = s.drop(1).dropRight(1)
18

19 def get_all_URLs(page: String) : Set[String] =
20 http_pattern.findAllIn(page).map(unquote).toSet
21

22 def print_str(s: String) =
23 if (s == "") () else println(s)
24

25 def crawl(url: String, n: Int) : Unit = {
26 if (n == 0) ()
27 else {
28 println(s" Visiting: $n $url")
29 val page = get_page(url)
30 print_str(email_pattern.findAllIn(page).mkString("\n"))
31 for (u <- get_all_URLs(page).par) crawl(u, n - 1)
32 }
33 }
34

35 // staring URL for the crawler
36 val startURL = """https://nms.kcl.ac.uk/christian.urban/"""
37

38 crawl(startURL , 3)

Figure 2: A small email harvester—whenever we download a web‑page, we
also check whether it contains any email addresses. For this we use the regular
expression email_pattern in Line ??. The main change is in Line ?? where all
email addresses that can be found in a page are printed.

13

(?:(?:\r\n)?[\t])*(?:(?:(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t]
)+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:
\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(
?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[
\t]))*"(?:(?:\r\n)?[\t])*))*@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\0
31]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\
](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+
(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:
(?:\r\n)?[\t])*))*|(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z
|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)
?[\t])*)*\<(?:(?:\r\n)?[\t])*(?:@(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\
r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[
\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)

?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t]
)*))*(?:,@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[
\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*

)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t]
)+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*)
:(?:(?:\r\n)?[\t]))?(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+
|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r
\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:
\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t
]))*"(?:(?:\r\n)?[\t])*))*@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031
]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](
?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?
:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?
:\r\n)?[\t])*))*\>(?:(?:\r\n)?[\t])*)|(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?
:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?
[\t]))*"(?:(?:\r\n)?[\t])*)*:(?:(?:\r\n)?[\t])*(?:(?:(?:[^()<>@,;:\\".\[\]
\000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|
\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>
@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"
(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*))*@(?:(?:\r\n)?[\t]
)*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\
".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?
:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[
\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*|(?:[^()<>@,;:\\".\[\] \000-
\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(
?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*)*\<(?:(?:\r\n)?[\t])*(?:@(?:[^()<>@,;
:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([
^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\"
.\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\
]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*(?:,@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\
[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\
r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\]
\000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]
|\\.)*\](?:(?:\r\n)?[\t])*))*)*:(?:(?:\r\n)?[\t])*)?(?:[^()<>@,;:\\".\[\] \0
00-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\
.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,
;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?
:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*))*@(?:(?:\r\n)?[\t])*
(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".
\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[
^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]
]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*\>(?:(?:\r\n)?[\t])*)(?:,\s*(
?:(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\
".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*)(?:\.(?:(
?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[
\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t
])*))*@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t
])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?
:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|
\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*|(?:
[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\
]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*)*\<(?:(?:\r\n)
?[\t])*(?:@(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["
()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)
?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>
@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*(?:,@(?:(?:\r\n)?[
\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,

;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t]
)*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\
".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*)*:(?:(?:\r\n)?[\t])*)?
(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".
\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*)(?:\.(?:(?:
\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\[
"()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])
))@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])
+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\
.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z
|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*\>(?:(
?:\r\n)?[\t])*))*)?;\s*)

Figure 3: Nothing that can be said about this regular expression…except it is a
monstrosity.

14

