
Coursework 3

This coursework is worth 10% and is due on 27 November at 16:00. You are
asked to implement a parser for the WHILE language and also an interpreter.
You can do the implementation in any programming language you like, but
you need to submit the source code with which you answered the questions,
otherwise a mark of 0% will be awarded. You should use the lexer from the
previous coursework for the parser. Please submit your code to Github by the
deadline.

DisclaimerExclamation-Triangle

It should be understood that the work you submit represents your own effort.
You have not copied from anyone else. An exception is the Scala code I showed
during the lectures or uploaded to KEATS, which you can both use. You can
also use your own code from the CW 1 and CW 2. But do not be tempted to ask
Github Copilot for help or do any other shenanigans like this!

Question 1

Design a grammar for the WHILE language and give the grammar rules. The
main categories of non-terminals should be:

• arithmetic expressions (with the operations from the previous course-
work, that is +, -, *, / and %)

• boolean expressions (with the operations ==, <, >, >=, <=, !=, &&, ||, true
and false)

• single statements (that is skip, assignments, ifs, while-loops, read and
write)

• compound statements separated by semicolons

• blocks which are enclosed in curly parentheses

Make sure the grammar is not left-recursive.

Question 2

You should implement a parser for theWHILE language using parser combina-
tors. Be careful that the parser takes as input a stream, or list, of tokens generated
by the tokenizer from the previous coursework. For this you might want to fil-
ter out whitespaces and comments. Your parser should be able to handle the
WHILE programs in Figures 2 – 5. In addition give the parse tree according to
your grammar for the statement:

if (a < b) then skip else a := a * b + 1

1

The output of the parser is an abstract syntax tree (AST). A (possibly incom-
plete) datatype for ASTs of the WHILE language is shown in Figure 1.

Question 3

Implement an interpreter for the WHILE language you designed and parsed
in Question 1 and 2. This interpreter should take as input an AST. However
be careful because, programs contain variables and variable assignments. This
means you need to maintain a kind of memory, or environment, where you
can look up a value of a variable and also store a new value if it is assigned.
Therefore an evaluation function (interpreter) needs to look roughly as follows

eval_stmt(stmt, env)

where stmt corresponds to the parse tree of the program and env is an envi-
ronment acting as a store for variable values. Consider the Fibonacci program
in Figure 2. At the beginning of the program this store will be empty, but needs
to be extended in line 3 and 4 where the variables minus1 and minus2 are as-
signed values. These values need to be reassigned in lines 7 and 8. The pro-
gram should be interpreted according to straightforward rules: for example an
if-statement will “run” the if-branch if the boolean evaluates to true, otherwise
the else-branch. Loops should be run as long as the boolean is true. Note also
that some programs contain a read-statement, which means you need to read
and integer from the commandline and store the value in the corresponding
variable. Programs you should be able to run are shown in Figures 2 – 5. The
output of the primes.while should look as follows:
Give some time measurements for your interpreter and the loop program in
Figure 3. For example how long does your interpreter take when start is ini-
tialised with 100, 500 and so on. How far can you scale this value if you are
willing to wait, say 1 Minute?

2

abstract class Stmt
abstract class AExp
abstract class BExp

type Block = List[Stmt]

case object Skip extends Stmt
case class If(a: BExp, bl1: Block, bl2: Block) extends Stmt
case class While(b: BExp, bl: Block) extends Stmt
case class Assign(s: String, a: AExp) extends Stmt
case class Read(s: String) extends Stmt
case class WriteVar(s: String) extends Stmt
case class WriteStr(s: String) extends Stmt

// for printing variables and strings

case class Var(s: String) extends AExp
case class Num(i: Int) extends AExp
case class Aop(o: String, a1: AExp, a2: AExp) extends AExp

case object True extends BExp
case object False extends BExp
case class Bop(o: String, a1: AExp, a2: AExp) extends BExp
case class Lop(o: String, b1: BExp, b2: BExp) extends BExp

// logical operations: and, or

Figure 1: The datatype for abstract syntax trees in Scala.

3

2
3
5
7
11
13
17
19
23
29
31
37
41
43
47
53
59
61
67
71
73
79
83
89
97
Map(end -> 100, n -> 100, f -> 4, tmp -> 1)

Figure 2: Sample output for the file primes.while.

4

write "Fib: ";
read n;
minus1 := 1;
minus2 := 0;
while n > 0 do {

temp := minus2;
minus2 := minus1 + minus2;
minus1 := temp;
n := n - 1

};
write "Result: ";
write minus2 ;
write "\n"

Figure 3: Fibonacci program in the WHILE language.

5

start := 1000;
x := start;
y := start;
z := start;
while 0 < x do {

while 0 < y do {
while 0 < z do { z := z - 1 };
z := start;
y := y - 1

};
y := start;
x := x - 1

}

Figure 4: The three-nested-loops program in the WHILE language. Usually
used for timing measurements.

// prints out prime numbers from 2 to 100

end := 100;
n := 2;
while (n < end) do {

f := 2;
tmp := 0;
while ((f < n / 2 + 1) && (tmp == 0)) do {

if ((n / f) * f == n) then { tmp := 1 } else { skip };
f := f + 1

};
if (tmp == 0) then { write(n); write("\n") } else { skip };
n := n + 1

}

Figure 5: Prime number program.

6

// Collatz series
//
// needs writing of strings and numbers; comments

bnd := 1;
while bnd < 101 do {

write bnd;
write ": ";
n := bnd;
cnt := 0;

while n > 1 do {
write n;
write ",";

if n % 2 == 0
then n := n / 2
else n := 3 * n+1;

cnt := cnt + 1
};

write " => ";
write cnt;
write "\n";
bnd := bnd + 1

}

Figure 6: Collatz series program.

7

Answers

Name:

Question 1 (Grammar):

8

Question 2 (Parse Tree):

Question 3 (Timings):

n secs

100

500

700

1000

9

