
Handout 8 (A Functional Language)
The language we looked at in the previous lecture was rather primitive and the
compiler rather crude. In this handout we like to have a look at a slightly more
comfortable language and a tiny-teeny bit more realistic compiler. A small col-
lection of programs we want to be able to write and compile is as follows:

def fib(n) = if n == 0 then 0
else if n == 1 then 1
else fib(n - 1) + fib(n - 2);

def fact(n) = if n == 0 then 1 else n * fact(n - 1);

def ack(m, n) = if m == 0 then n + 1
else if n == 0 then ack(m - 1, 1)
else ack(m - 1, ack(m, n - 1));

def gcd(a, b) = if b == 0 then a else gcd(b, a % b);

We will still restrict us to just programs about integers, that means for exam-
ple that every function needs to return an integer. The grammar of the Fun-
language is slightly simpler than the While-language, because almost every-
thing is an expression. The grammar rules are as follows:

⟨Exp⟩ ::= ⟨Var⟩ | ⟨Num⟩
| ⟨Exp⟩ + ⟨Exp⟩ | ... | (⟨ExP⟩)
| if ⟨BExp⟩ then ⟨Exp⟩ else ⟨Exp⟩
| write ⟨Exp⟩
| ⟨Exp⟩ ; ⟨Exp⟩
| FunName (⟨Exp⟩, ..., ⟨Exp⟩)

⟨BExp⟩ ::= ...
⟨Decl⟩ ::= ⟨Def ⟩ ; ⟨Decl⟩ | ⟨Exp⟩
⟨Def⟩ ::= def FunName (x1, ..., x2)

where ⟨Id⟩ stands for variables and ⟨Num⟩ for numbers. For the moment let us
omit variables from arithmetic expressions. Our parser will take this grammar
and given an input produce abstract syntax trees. For example for the expres-
sion 1 + ((2 ∗ 3) + (4 − 3)) it will produce the following tree.

1

+

+

−

34

∗

32

1

To generate code for this expression, we need to traverse this tree in post-order
fashion and emit code for each node—this traversal in post-order fashion will
produce code for a stack-machine (what the JVM is). Doing so for the tree above
generates the instructions

ldc 1
ldc 2
ldc 3
imul
ldc 4
ldc 3
isub
iadd
iadd

If we “run” these instructions, the result 8will be on top of the stack (I leave this
to you to verify; the meaning of each instruction should be clear). The result
being on the top of the stack will be a convention we always observe in our
compiler, that is the results of arithmetic expressions will always be on top of
the stack. Note, that a different bracketing of the expression, for example (1 +
(2 ∗ 3)) + (4− 3), produces a different abstract syntax tree and thus potentially
also a different list of instructions. Generating code in this fashion is rather
easy to implement: it can be donewith the following recursive compile-function,
which takes the abstract syntax tree as argument:

compile(n) def
= ldc n

compile(a1 + a2)
def
= compile(a1) @ compile(a2) @ iadd

compile(a1 − a2)
def
= compile(a1) @ compile(a2) @ isub

compile(a1 ∗ a2)
def
= compile(a1) @ compile(a2) @ imul

compile(a1\a2)
def
= compile(a1) @ compile(a2) @ idiv

However, our arithmetic expressions can also contain variables. We will
represent them as local variables in the JVM. Essentially, local variables are an
array or pointers tomemory cells, containing in our case only integers. Looking
up a variable can be done with the instruction

iload index

2

which places the content of the local variable index onto the stack. Storing the
top of the stack into a local variable can be done by the instruction

istore index

Note that this also pops off the top of the stack. One problem we have to over-
come, however, is that local variables are addressed, not by identifiers, but by
numbers (starting from 0). Therefore our compiler needs to maintain a kind of
environmentwhere variables are associated to numbers. This association needs
to be unique: if we muddle up the numbers, then we essentially confuse vari-
ables and the consequence will usually be an erroneous result. Our extended
compile-function for arithmetic expressions will therefore take two arguments:
the abstract syntax tree and the environment, E, that maps identifiers to index-
numbers.

compile(n, E) def
= ldc n

compile(a1 + a2, E) def
= compile(a1, E) @ compile(a2, E) @ iadd

compile(a1 − a2, E) def
= compile(a1, E) @ compile(a2, E) @ isub

compile(a1 ∗ a2, E) def
= compile(a1, E) @ compile(a2, E) @ imul

compile(a1\a2, E) def
= compile(a1, E) @ compile(a2, E) @ idiv

compile(x, E) def
= iload E(x)

In the last line we generate the code for variables where E(x) stands for looking
up the environment to which index the variable x maps to.

There is a similar compile-function for boolean expressions, but it includes
a “trick” to do with if- and while-statements. To explain the issue let us first
describe the compilation of statements of the While-language. The clause for
skip is trivial, since we do not have to generate any instruction

compile(skip, E) def
= ([], E)

[] is the empty list of instructions. Note that the compile-function for statements
returns a pair, a list of instructions (in this case the empty list) and an environ-
ment for variables. The reason for the environment is that assignments in the
While-languagemight change the environment—clearly if a variable is used for
the first time, we need to allocate a new index and if it has been used before, we
need to be able to retrieve the associated index. This is reflected in the clause
for compiling assignments:

compile(x := a, E) def
= (compile(a, E) @ istore index, E′)

We first generate code for the right-hand side of the assignment and then add
an istore-instruction at the end. By convention the result of the arithmetic
expression a will be on top of the stack. After the istore instruction, the result
will be stored in the index corresponding to the variable x. If the variable x
has been used before in the program, we just need to look up what the index is

3

and return the environment unchanged (that is in this case E′ = E). However,
if this is the first encounter of the variable x in the program, then we have to
augment the environment and assign xwith the largest index in E plus one (that
is E′ = E(x 7→ largest_index + 1)). That means for the assignment x := x + 1
we generate the following code

iload nx
ldc 1
iadd
istore nx

where nx is the index for the variable x.
More complicated is the code for if-statments, say

if b then cs1 else cs2

where b is a boolean expression and the cs1/2 are the statements for each if-
branch. Lets assume we already generated code for b and cs1/2. Then in the
true-case the control-flow of the program needs to be

code of b code of cs1 code of cs2

jump

where we start with running the code for b; since we are in the true case we
continue with running the code for cs1. After this however, we must not run
the code for cs2, but always jump after the last instruction of cs2 (the code for the
else-branch). Note that this jump is unconditional, meaning we always have
to jump to the end of cs2. The corresponding instruction of the JVM is goto. In
case b turns out to be false we need the control-flow

code of b code of cs1 code of cs2

conditional jump

where we now need a conditional jump (if the if-condition is false) from the
end of the code for the boolean to the beginning of the instructions cs2. Once
we are finished with running cs2 we can continue with whatever code comes
after the if-statement.

The goto and the conditional jumps need addresses towhere the jump should
go. Sincewe are generating assembly code for the JVM,we do not actually have
to give (numeric) addresses, but can just aĴach (symbolic) labels to our code.
These labels specify a target for a jump. Therefore the labels need to be unique,
as otherwise it would be ambiguous where a jump should go to. A label, say L,
is aĴached to code like

4

L:
instr1
instr2

...

where a label is indicated by a colon.
Recall the “trick” with compiling boolean expressions: the compile-function

for boolean expressions takes three arguments: an abstract syntax tree, an en-
vironment for variable indices and also the label, lab, to where an conditional
jump needs to go. The clause for the expression a1 = a2, for example, is as
follows:

compile(a1 = a2, E, lab) def
=

compile(a1, E) @ compile(a2, E) @ if_icmpne lab

where we are first generating code for the subexpressions a1 and a2. This will
mean after running the corresponding code there will be two integers on top
of the stack. If they are equal, we do not have to do anything (except for pop-
ping them off from the stack) and just continue with the next instructions (see
control-flow of ifs above). However if they are not equal, then we need to (con-
ditionally) jump to the label lab. This can be done with the instruction

if_icmpne lab

Other jump instructions for boolean operators are

̸= ⇒ if_icmpeq
< ⇒ if_icmpge
≤ ⇒ if_icmpgt

and so on. I leave it to you to extend the compile-function for the other boolean
expressions. Note thatwe need to jumpwhenever the boolean is not true, which
meanswehave to “negate” the jump condition—equals becomes not-equal, less
becomes greater-or-equal. If you do not like this design (it can be the source of
some nasty, hard-to-detect errors), you can also change the layout of the code
and first give the code for the else-branch and then for the if-branch. How-
ever in the case of while-loops this way of generating code still seems the most
convenient.

We are now ready to give the compile function for if-statments—remember
this function returns for staments a pair consisting of the code and an environ-
ment:

5

compile(if b then cs1 else cs2, E) def
=

Lifelse (fresh label)
Lifend (fresh label)
(is1, E′) = compile(cs1, E)
(is2, E′′) = compile(cs2, E′)
(compile(b, E, Lifelse)
@ is1
@ goto Lifend
@ Lifelse :
@ is2
@ Lifend :, E′′)

In the first two lines we generate two fresh labels for the jump addresses (just
before the else-branch and just after). In the next two lines we generate the
instructions for the two branches, is1 and is2. The final code will be first the
code for b (including the label just-before-the-else-branch), then the goto for
after the else-branch, the label Lifesle, followed by the instructions for the else-
branch, followed by the after-the-else-branch label. Consider for example the
if-statement:

if 1 = 1 then x := 2 else y := 3

The generated code is as follows:

1 ldc 1
2 ldc 1
3 if_icmpne L_ifelse
4 ldc 2
5 istore 0
6 goto L_ifend
7 L_ifelse:
8 ldc 3
9 istore 1
10 L_ifend:

The first three lines correspond to the the boolean expression 1 = 1. The jump
for when this boolean expression is false is in Line 3. Lines 4-6 corresponds
to the if-branch; the else-branch is in Lines 8 and 9. Note carefully how the
environment E is threaded through the recursive calls of compile. The function
receives an environment E, but it might extend it when compiling the if-branch,
yielding E′. This happens for example in the if-statement above whenever the
variable x has not been used before. Similarly with the environment E′′ for the
second call to compile. E′′ is also the environment that needs to be returned as
part of the answer.

The compilation of thewhile-loops, say while b do cs, is very similar. In case
the condition is true and we need to do another iteration, and the control-flow
needs to be as follows

6

code of b code of cs

Whereas if the condition is not true, we need to jump out of the loop, which
gives the following control flow.

code of b code of cs

Again we can use the compile-function for boolean expressions to insert the ap-
propriate jump to the end of the loop (label Lwend below).

compile(while b do cs, E) def
=

Lwbegin (fresh label)
Lwend (fresh label)
(is, E′) = compile(cs1, E)
(Lwbegin :
@ compile(b, E, Lwend)
@ is
@ goto Lwbegin
@ Lwend :, E′)

I let you go through how this clause works. As an example you can consider
the while-loop

while x <= 10 do x := x + 1

yielding the following code

1 L_wbegin:
2 iload 0
3 ldc 10
4 if_icmpgt L_wend
5 iload 0
6 ldc 1
7 iadd
8 istore 0
9 goto L_wbegin
10 L_wend:

Next we need to consider the statement write x, which can be used to print
out the content of a variable. For this we need to use a Java library function. In
order to avoid having to generate a lot of code for each write-command, we use

7

a separate helper-method and just call this method with an argument (which
needs to be placed onto the stack). The code of the helper-method is as follows.

1 .method public static write(I)V
2 .limit locals 1
3 .limit stack 2
4 getstatic java/lang/System/out Ljava/io/PrintStream;
5 iload 0
6 invokevirtual java/io/PrintStream/println(I)V
7 return
8 .end method

The first line marks the beginning of the method, called write. It takes a sin-
gle integer argument indicated by the (I) and returns no result, indicated by
the V. Since the method has only one argument, we only need a single local
variable (Line 2) and a stack with two cells will be sufficient (Line 3). Line 4 in-
structs the JVM to get the value of the field out of the class java/lang/System.
It expects the value to be of type java/io/PrintStream. A reference to this
value will be placed on the stack. Line 5 copies the integer we want to print
out onto the stack. In the next line we call the method println (from the class
java/io/PrintStream). Wewant to print out an integer and do not expect any-
thing back (that is why the type annotation is (I)V). The return-instruction in
the next line changes the control-flow back to the place from where write was
called. This method needs to be part of a header that is included in any codewe
generate. The helper-method write can be invoked with the two instructions

1 iload E(x)
2 invokestatic XXX/XXX/write(I)V

where we first place the variable to be printed on top of the stack and then call
write. The XXX need to be replaced by an appropriate class name (this will be
explained shortly).

By generating code for a While-program, we end up with a list of (JVM as-
sembly) instructions. Unfortunately, there is a bitmore boilerplate code needed
before these instructions can be run. The complete code is shown in Figure 1.
This boilerplate code is very specific to the JVM. If we target any other virtual
machine or amachine language, thenwewould need to change this code. Lines
4 to 8 in Figure 1 contain a method for object creation in the JVM; this method
is called before the main-method in Lines 10 to 17. Interesting are the Lines 11
and 12 where we hardwire that the stack of our programs will never be larger
than 200 and that themaximumnumber of variables is also 200. This seem to be
conservative default values that allow is to run some simple While-programs.
In a real compiler, we would of course need to work harder and find out ap-
propriate values for the stack and local variables.

To sum up, in Figure 2 is the complete code generated for the slightly non-
sensical program

8

1 .class public XXX.XXX
2 .super java/lang/Object
3

4 .method public <init>()V
5 aload_0
6 invokenonvirtual java/lang/Object/<init>()V
7 return
8 .end method
9

10 .method public static main([Ljava/lang/String;)V
11 .limit locals 200
12 .limit stack 200
13

14 …here comes the compiled code…
15

16 return
17 .end method

Figure 1: Boilerplate code needed for running generated code.

1 x := 1 + 2;
2 write x

Having this code at our disposal, we need the assembler to translate the gener-
ated code into JVM bytecode (a class file). This bytecode is understood by the
JVM and can be run by just invoking the java-program.

9

1 .class public test.test
2 .super java/lang/Object
3

4 .method public <init>()V
5 aload_0
6 invokenonvirtual java/lang/Object/<init>()V
7 return
8 .end method
9

10 .method public static write(I)V
11 .limit locals 1
12 .limit stack 2
13 getstatic java/lang/System/out Ljava/io/PrintStream;
14 iload 0
15 invokevirtual java/io/PrintStream/println(I)V
16 return
17 .end method
18

19 .method public static main([Ljava/lang/String;)V
20 .limit locals 200
21 .limit stack 200
22 ldc 1
23 ldc 2
24 iadd
25 istore 0
26 iload 0
27 invokestatic test/test/write(I)V
28 return
29 .end method

Figure 2: Generated code for a test program. This code can be processed by an
Java assembler producing a class-file, which can be run by the java-program.

10

