
CSCI 742 - Compiler Construction

Lecture 33
Live Variable Analysis

Instructor: Hossein Hojjat

April 16, 2018



Recap: Control Flow Graphs

• Control Flow Graph (CFG): graph representation of computation
and control flow in the program

• Framework to statically analyze program control-flow

• Next: use CFG to statically extract information about program

• Reason at compile-time about run-time values of variables in all
program executions

• Data-flow analysis: gather information about the possible set of
values of variables at various points in a program

1



Liveness

• Liveness is a data-flow property of variables:
“Is the value of this variable needed?”

• Optimization: eliminate assignments to dead variables
(i.e. variables that are never used after definitions)

int f(int x, int y) {
int z = x + y;

...

? ?
• Live variable analysis is undecidable in general
• We compute a syntactic and conservative approximation of liveness

- Like many other data-flow analysis techniques

int f(int x, int y) {
int z = x + y;
if (tricky -calculation) x = z;
return x;

} 2



Live Variable Analysis: Backward

• Liveness is naturally computed using backward data-flow analysis

• Usage information from future statements must be propagated
backward through the program to discover which variables are live

int f(int x, int y) {
int z = x + y;

...

int t=z-2; println(z);

if(z!=2) ...;

3



Live Variable Analysis

• Variable liveness flows backward through the program

• Each statement has an effect on liveness information as it flows past

• A statement makes a variable live when it reads it

4

if (y>1) println(y);

{x, y}
b = z-x;

{x, y, z}

a = x + 1;

{x}

{}
reads x

reads y

reads z , x



Live Variable Analysis

• Variable liveness flows backward through the program

• Each statement has an effect on liveness information as it flows past

• A statement makes a variable dead when it defines (assigns to) it

4

{x, y}

{x, y, z}
z = 1;

{x}

{}

defines z

defines y

defines x

y = 10;

x = 5;



Live Variable Analysis

As liveness flows backwards past an statement, we modify liveness information:

• Add any variables which it reads (they become live)
• Remove any variables which it defines (they become dead)

use(println(x)) = { x }

{x, y}

{y}

def (x = 3) = { x }

{x, y}

{y}

Variable v is live before a statement S if:

1. There is a statement S′ in CFG that uses v
2. There exists a path from S to S′ passing through no def of v

5



Live Variable Analysis

• If a statement both references and defines variables, remove the
defined variables before adding the read ones

• L0 Initial set of live variables

x = x + y

L0

L2

L0 = L1 ∪ {x, y}

L2

L1 = L2 \ {x}

read(x,y)

write(x)

L0 =
(
L2 \ {x}

)
∪ {x, y}

In general:

• in(S): set of live variables immediately before statement S
• out(S): set of live variables immediately after statement S

in(S) =
(
out(S) \ def(S)

)
∪ use(S) 6



Straight-Line Code

• In straight-line code each node has a unique successor
• Variables live at the exit of a node are exactly those variables live at

the entry of its successor

in(i4) = { z }

i2: x = x+y

i3: println(x)

i4:

out(i3) = { z }

in(i3) = { x , z }

out(i2) = { x , z}

in(i2) = { x , y , z }

out(i1) = { x , y , z}

i1:

7



Multiple Successors

• In general each node has an arbitrary number of successors
• Variables live at the exit of a node are exactly those variables live at

the entry of all its successors

Example:

out(S) = { x , y , z}
S

in(S1) = { x , z}

S1

in(S2) = { x , y}

S2

General:

S

S1 Sn

out(S) =
⋃

Si∈succ(S)

in(Si)

8



Data-flow Equations

• Start with CFG and derive a system of constraints between live
variable sets

in(S) =
(
out(S) \ def(S)

)
∪ use(S)

out(S) =
⋃

Si∈succ(S)

in(Si)

Solve constraints:

• Start with empty sets of live variables

• Iteratively apply constraints

• Stop when we reach a fixed point

9



Constraint Solving Algorithm

for all statements S do
in(S) = out(S) = ∅

repeat
select a statement S such that

in(S) 6= (out(S) \ def(S)) ∪ use(S)
or (respectively)

out(S) 6= ⋃Si∈succ(S) in(Si)

update in(S) (or out(S)) accordingly
until no such change is possible

10



Exercise

• Compute the set of live variables at each point of the program

x = 5;

y = 10;

z = 0;

while (x > 0) {

x = x - 1;

u = y;

while (u > 0) {

u = u - 1;

z = z + 1;

}

}

in(S) =
(
out(S) \ def(S)

)
∪ use(S)

out(S) =
⋃

Si∈succ(S)

in(Si)

x = 5

y = 10

z = 0

[x > 0]

x = x - 1

u = y

[u > 0]

u = u - 1

z = z + 1

entry

exit

[¬(u > 0)]

[¬(x > 0)]

def = {u}, use = {y}
[¬(u > 0)]

11



Exercise

• Compute the set of live variables at each point of the program

x = 5;

y = 10;

z = 0;

while (x > 0) {

x = x - 1;

u = y;

while (u > 0) {

u = u - 1;

z = z + 1;

}

}

in(S) =
(
out(S) \ def(S)

)
∪ use(S)

out(S) =
⋃

Si∈succ(S)

in(Si)

x = 5

y = 10

z = 0

[x > 0]

x = x - 1

u = y

[u > 0]

u = u - 1

z = z + 1

entry

exit

[¬(u > 0)]

[¬(x > 0)]

def = {u}, use = {y}
[¬(u > 0)]

11



Intra/Inter-Procedural Analysis

• Intra-procedural Analysis: analyzing the body of a single procedure

• Inter-procedural Analysis: analyzing the whole program with
function calls

x = 0;

// is y live here? (yes iff used in procedure P)

P();

// is x still equal to 0 here?

// (yes iff not changed in P)

y = x;

12



Intra/Inter-Procedural Analysis

A naïve and safe approach to inter-procedural analysis:

• Assume any function will read and write all global variables
(worst case scenario)

• Every global variable is live before any function call!

• Leads to over-cautious optimizations

• There are more accurate inter-procedural analyses that consider the
call graph of a program

• (beyond the scope of the course)

13



Aliases

• Most languages use variables containing addresses
• e.g. pointers (C,C++), references (Java), call-by-reference

parameters (Pascal, C++, Fortran)

• Pointer aliases: multiple names for the same memory location
• Dereferencing the aliases returns the same object

• Problem: Don’t know what variables read and written by accesses
via pointer aliases
(e.g. *p=y; x=*p; p->f=y; x=p->f; etc.)

• Need to know accessed variables to compute dataflow information
after each instruction

14



Aliases

• Worst-case scenarios:

• *p = y may write any memory location

• x = *p may read any memory location

• All the variables may be live before x = *p

• Leads to over-cautious optimizations

• There are more accurate pointer alias analyses
• (beyond the scope of the course)

15


