CSCI 742 - Compiler Construction

Lecture 32
Control Flow Graphs
Instructor: Hossein Hojjat

April 13, 2018

Recap: Optimizations

e Optimizations: code transformations that improve the program

- Usually to improve execution time
- Sometimes to reduce program size or power usage

e Can be done at high-level or low-level

- e.g. constant folding
e Optimizations must preserve the original behavior of program

e Execution of transformed code must yield same result as the original
code for every possible input

e Example: dead code elimination
e Variable is dead if value is never used after definition

e Eliminate assignments to dead variables

Optimization Correctness: Dead Code Elimination

e Which assignments are dead and can be removed?

x =y - 1;
y =z * 2;
X =y - Z;
z = 10;
z X

Optimization Correctness: Dead Code Elimination

e Which assignments are dead and can be removed?

x =y - 1;
y =z * 2;
X =y - Z;
z = 10;
z X

Is x dead at first statement?

Need to know if values assigned to x is never used later

Obvious for this simple example (with no control flow)

Not obvious for complex flow of control

Optimization Correctness: Dead Code Elimination

e Which assignments are dead and can be removed?

X =—y— 1,
y =z *x 23
X =y - Z;
z =-10;
zZ = X;

Is x dead at first statement?

Need to know if values assigned to x is never used later

Obvious for this simple example (with no control flow)

Not obvious for complex flow of control

Optimization Correctness: Dead Code Elimination

e Add control flow to example

elsx =y — 1 dead code? Is z

x =y - 1;
y =z * 2;
if (cl) x =
z = 10;

10 dead code?

Optimization Correctness: Dead Code Elimination

e Add control flow to example

elsx =y — 1dead code? Isz = 10 dead code?

x =y - 1;

y =z * 2;

if (cl) x =y - z;
z = 10;

Z = X;

e Statement x

y — 1 is not dead code anymore

e On some executions, value is used later

Optimization Correctness: Dead Code Elimination

e Add more control flow to example

elsx =y — 1deadcode? Isz =
while (c2) {
x =y - 1;
y =z * 2;

if (cl) x =y
z = 10; }

Z = X;

10 dead code?

Optimization Correctness: Dead Code Elimination

e Add more control flow to example

elsx =y — 1dead code? Isz = 10 dead code?

while(c2) {

x =y - 1;
y =z % 2;
if (cl) x

z = 10; }

zZ = X,

e Statement x

y — 1 not dead anymore
e Statement z = 10 not dead either

e On some executions, value from z = 10 is used later

Low-level Code

e Harder to eliminate dead code in low-level code

0: iload_1

1: ifeq 32
4: iload_3

5: iconst_1

6: isub

7: istore_2

8: iload 4
10: iconst_2

11: imul

12: istore_3

13: iload_o0

14: ifeq 22
17: iload_3

18: iload 4
20: isub
21: istore_2
22: bipush 10
24: istore 4
26: iload_2
27: istore 4

29: goto 0 3

Optimizations and Control Flow

e Application of optimizations requires information

- e.g. dead code elimination needs to know if variables are dead when
assigned values

e Required information are not usually explicit in the program
e We must compute it statically (at compile-time)

e Must characterize all dynamic (run-time) executions

e Control flow makes it hard to extract information

- Branches and loops in the program

- Different executions =
different branches taken,
different number of loop iterations executed

Control Flow Graphs

e Control Flow Graph: graph representation of computation and
control flow in the program

e Specifies all possible execution paths

x =1
while (x < 50) {

X =X + 2

Generating Control-Flow Graphs

Control-Flow graph is similar to AST

e Start with graph that has one entry and one exit node

Draw an edge from entry to exit and label it with the entire program
entry

program

exit

Recursively decompose the program to have more edges
with simpler labels

When labels cannot be decomposed further, we are done

Flattening Expressions

e Label flattening: simplify a label, make an order on the side effects

E1,FEy: complex expressions

t1,to : fresh variables

t1:E1
ZIJ:El*EQ j t2:E2
r =11 * 1ty

Conditional Statement

Iif (e) s else sy = [(b

S1
b is fresh variable

e Translation using branch instruction with two destinations

branch (e;)

branch (e;&&e3) :>
branch (es)

S1 52

while Statement

[While (e) {s} —

b is fresh variable

e Translation using the branch instruction

I while (e) {s} = branch(e)

S

Exercise 1: Convert to CFG

while (c2) {

x =y - 1;
y =z x 2;
if (cl) x =y - z;
z = 10;
}
z = X;

10

Exercise 1: Convert to CFG

while(c2) {
x =y - 1;
y =z % 2;
if (cl) x =
z = 10;

N
Il

X7

Exercise 2: Convert to CFG

int 1 = n;
while (i > 1) {
println (i)

1] ~

if (1 $ 2 == 0) {
i=1/ 2;

} else {
1= 3xi + 1;

11

Control Flow Graph Construction

[51; 32] Usource Vtarget —
8
[51] Usource Vfresh

[52] Ufresh Utarget

insert(vs, stmt, v;) = cfg + (v, stmt, vy)

[=y + 2] vs v = insert(vs, & =y + z,v4)

where y, y are constants or variables

[braHCh(l’ < y)] Usource Vtrue Ufalse —
insert(Vsource; [T < Y], Virve);

insert(Vsource, /(& <)], Veasse)

12

