

CSCI 742 - Compiler Construction

Lecture 17 Chomsky Normal Form (CNF) Instructor: Hossein Hojjat

February 23, 2018

Directionality

Directional Methods

- Process the input symbol by symbol from Left to right
- Advantage: parsing starts and makes progress before the last symbol of the input is seen
- Example: LL and LR parsers

Non-directional Methods

- Allow access to input in an arbitrary order
- Require the entire input to be in memory before parsing can start
- Advantage: allow more flexible grammars than directional parsers
- Example: CYK parser

Directionality

Directional Methods

- Process the input symbol by symbol from Left to right
- Advantage: parsing starts and makes progress before the last symbol of the input is seen
- Example: LL and LR parsers

Non-directional Methods

- Allow access to input in an arbitrary order
- Require the entire input to be in memory before parsing can start
- Advantage: allow more flexible grammars than directional parsers
- Example: CYK parser

• LL and LR: deterministic, directional, linear-time recognition of restricted forms of context-free grammars

How can we design algorithms to parse more grammars non-directionally? (if we allow more time-consuming algorithms)

Some ideas:

- **Naïve:** enumerate everything!
- Backtracking: try subtrees and discard partial solutions if unsuccessful
- Dynamic Programming: save partial solutions in a table for later use
- CYK recognizes any context-free grammar in Chomsky Normal Form
- Named after J. Cocke, D.H. Younger and T. Kasami
- Uses dynamic programming
- Bottom-up: reduces already recognized right-hand side of a production rule to its left-hand side non-terminal
- Non-directional: accesses input in arbitrary order so requires the entire input to be in memory before parsing can start

In this lecture we learn about Chomsky Normal Form (CNF)

A CFG is in Chomsky Normal Form if each rule is of the form

 $A \rightarrow BC$ $A \rightarrow a$

where

- \bullet a is any terminal
- \bullet A, B, C are non-terminals
- \bullet B, C cannot be start variable

We allow the rule $S \to \epsilon$ if $\epsilon \in L$

Steps: (not in the optimal order)

- 1. remove unproductive non-terminals
- 2. remove unreachable non-terminals
- 3. remove ϵ -production rules $X \to \epsilon$ (X is not start non-terminal)
- 4. remove single non-terminal productions (unit production rules) $(X \to Y)$
- 5. reduce arity of every production to less than two
- 6. make terminals occur alone on right-hand side

(1) Unproductive Non-terminals

• Consider the following grammar with start non-terminal "stmt"

 $stmt \rightarrow identifier := identifier$ while (exp) stmt $if (expr)$ stmt else stmt $expr \rightarrow term + term$ | term – term term → factor ∗ factor factor \rightarrow (expr)

- There is no derivation of a sequence of tokens from expr
- Every derivation step of expr has at least one expr, term, or factor
- If a non-terminal cannot derive sequence of tokens we call it unproductive

Productive Non-terminals

- Productive non-terminals are obtained using these two rules (what remains is unproductive)
- 1) Terminals are productive
- 2) If $A \rightarrow \alpha$ is a production rule and each non-terminal symbols of α is productive then A is also productive $(\alpha \text{ can also be } \epsilon)$

Remove Unproductive Non-terminals

• Remove all production rules in which an unproductive non-terminal appears either on the left or the right

Exercise

Question:

• Remove all the unproductive non-terminals from the following grammar.

> $S \to B \mid AC$ $B \to aAa$ $A \rightarrow \epsilon$ $C \rightarrow cC \mid DA$ $D \to C$

Exercise

Question:

• Remove all the unproductive non-terminals from the following grammar.

> $S \to B \mid AC$ $B \to a A a$ $A \rightarrow \epsilon$ $C \rightarrow cC \mid DA$ $D \to C$

Answer:

 $S \to B$ $B \to a A a$ $A \rightarrow \epsilon$

• Consider the following grammar with start non-terminal "program"

program \rightarrow stmt | stmt program stmt \rightarrow assignment | whileStmt assignment \rightarrow expr = expr $ifStmt \rightarrow if (expr)$ stmt else stmt whileStmt \rightarrow while (expr) stmt

• No way to reach non-terminal "ifStmt" from "program"

Reachable Non-terminals

- Reachable non-terminals are obtained using these two rules (what remains is unreachable)
- 1) Starting non-terminal is reachable
- 2) If $A \rightarrow \alpha$ is a production rule and A is reachable, each non-terminal symbols of α is also reachable

Remove Unreachable Non-terminals

• Remove all production rules in which an unreachable non-terminal appears either on the left or the right

(3) Removing ϵ -Production Rules

• Ensure only top-level non-terminal can be nullable

 $\text{expr} \rightarrow \text{identifier}$

- Definition: Variable X is nullable if $X \Rightarrow^* \epsilon$
- Rules to compute the nullable variables of a grammar:
- 1) If $A \rightarrow \epsilon$ is a production rule then A is nullable
- 2) If $B \to X_1 X_2 \cdots X_n$ is a production rule and all the X_i are nullable then B is also nullable
- Compute the set of *nullable* non-terminals
- For each rule $A \to X_1 \cdots X_n$ add all production rules that that can be formed by eliminating $\mathop{\sf any}\nolimits$ combination of $\mathop{\sf nullable}\nolimits X_i$'s
- Repeat the above step for the newly added rules
- Remove all rules with empty right-hand sides
- If starting symbol S was nullable, then introduce a new start symbol S' instead, and add rule $S' \to S \mid$ ""
- Note: number of added rules for $A \to X_1 \cdots X_n$ is $O(2^k)$ (where k is the number of nullable X_i 's)

```
• Since stmtSeq is nullable, the rule
  blockStmt \rightarrow { stmtSeq }
     gives
  blockStmt \rightarrow \{ stmtSeq \} | \{ }
• Since stmtSeq and stmt are nullable, the rule
  stmtSeq \rightarrow stmt | stmt; stmtSeq
     gives
  stmtSeq \rightarrow stmt | stmt ; stmtSeq
   |; stmtSeq | stmt; |;
```
Exercise

Question:

- 1) Remove the ϵ production rules from the following grammar.
- 2) Remove unproductive non-terminals after step 1.

 $S \rightarrow ABC$ $B \to CAB \mid b$ $C \rightarrow ASD \mid AD$ $D \to CaA \mid \epsilon$ $A \rightarrow \epsilon$

Exercise

Question:

- 1) Remove the ϵ production rules from the following grammar.
- 2) Remove unproductive non-terminals after step 1.

 $S \rightarrow ABC$ $B \to CAB \mid b$ $C \rightarrow ASD \mid AD$ $D \to CaA \mid \epsilon$ $A \rightarrow \epsilon$

Answer:

After removing ϵ rules:

 $S \rightarrow ABC \mid AB \mid B \mid BC$ $B \to CAB \mid Ab \mid b \mid Cb$ $C \rightarrow ASD \mid AD \mid AS \mid S \mid SD \mid A \mid D$ $D \to CaA \mid Ca \mid a \mid aA$ 15

(4) Eliminating unit productions

• Single production rule is of the form

 $X \to Y$

where X , Y are non-terminals

 $program \rightarrow$ stmtSeq stmtSeq → stmt stmt; stmtSeq stmt \rightarrow assignment | whileStmt assignment \rightarrow expr = expr whileStmt \rightarrow while (expr) stmt

- If there is a unit production $X \to Y$ put an edge (X, Y) into graph
- If there is a path from Y to Z in the graph, and there is rule $Z \to X_1 X_2 \cdots X_n$ then add rule $Y \to X_1 X_2 \cdots X_n$

At the end, remove all unit productions

(4) Eliminating unit productions

```
program \rightarrow stmtSeq
   stmtSeq \rightarrow stmt | stmt; stmtSeq
        stmt \rightarrow assignment | whileStmt
assignment \rightarrow expr = expr
 whileStmt \rightarrow while (expr) stmt
```
After removing unit productions:

```
program \rightarrow expr = expr | while (expr) stmt
                 stmt; stmtSeq
   stmtSeq \rightarrow expr = expr | while (expr) stmt
                 stmt ; stmtSeq
       stmt \rightarrow expr = expr | while (expr) stmt
assignment \rightarrow expr = expr
 whileStmt \rightarrow while (expr) stmt
```
(5) Reducing Arity

• No more than 2 non-terminals on RHS

stmt \rightarrow while (expr) stmt

• becomes

 $stmt \rightarrow while$ stmt₁ stmt₁ \rightarrow (stmt₂ stmt₂ \rightarrow expr stmt₃ stmt₃ \rightarrow)stmt

(6) A non-terminal for each terminal

stmt \rightarrow while (expr) stmt

• becomes

stmt \rightarrow N_{while} stmt₁ stmt₁ \rightarrow N₍stmt₂ stmt₂ \rightarrow expr stmt₃ ${\sf stmt}_3 \to N_1{\sf stmt}$ $N_{\text{while}} \rightarrow$ while $N_{(} \rightarrow ($ $N_1 \rightarrow)$

- 1. remove unproductive non-terminals (optional)
- 2. remove unreachable non-terminals (optional)
- 3. make terminals occur alone on right-hand side
- 4. reduce arity of every production to $<$ 2
- 5. remove epsilons
- 6. remove unit productions $X \to Y$
- 7. unproductive non-terminals
- 8. unreachable non-terminals