
CSCI 742 - Compiler Construction

Lecture 17
Chomsky Normal Form (CNF)

Instructor: Hossein Hojjat

February 23, 2018

Directionality

Directional Methods

• Process the input symbol by symbol from Left to right

• Advantage: parsing starts and makes progress before the last symbol
of the input is seen

• Example: LL and LR parsers

Non-directional Methods

• Allow access to input in an arbitrary order

• Require the entire input to be in memory before parsing can start

• Advantage: allow more flexible grammars than directional parsers

• Example: CYK parser

1

Directionality

Directional Methods

• Process the input symbol by symbol from Left to right

• Advantage: parsing starts and makes progress before the last symbol
of the input is seen

• Example: LL and LR parsers

Non-directional Methods

• Allow access to input in an arbitrary order

• Require the entire input to be in memory before parsing can start

• Advantage: allow more flexible grammars than directional parsers

• Example: CYK parser

1

More Powerful Parsers

• LL and LR: deterministic, directional, linear-time recognition of
restricted forms of context-free grammars

How can we design algorithms to parse more grammars non-directionally?
(if we allow more time-consuming algorithms)

Some ideas:

- Naïve: enumerate everything!

- Backtracking: try subtrees and discard partial solutions if unsuccessful

- Dynamic Programming: save partial solutions in a table for later use

2

CYK Parsing

• CYK recognizes any context-free grammar in Chomsky Normal Form

• Named after J. Cocke, D.H. Younger and T. Kasami

• Uses dynamic programming

• Bottom-up: reduces already recognized right-hand side of a
production rule to its left-hand side non-terminal

• Non-directional: accesses input in arbitrary order so requires the
entire input to be in memory before parsing can start

In this lecture we learn about Chomsky Normal Form (CNF)

3

Chomsky Normal Form (CNF)

A CFG is in Chomsky Normal Form if each rule is of the form

A→ BC

A→ a

where

• a is any terminal

• A,B,C are non-terminals

• B, C cannot be start variable

We allow the rule S → ε if ε ∈ L

4

Conversion to Chomsky Normal Form (CNF)

Steps: (not in the optimal order)

1. remove unproductive non-terminals

2. remove unreachable non-terminals

3. remove ε-production rules X → ε (X is not start non-terminal)

4. remove single non-terminal productions (unit production rules)
(X → Y)

5. reduce arity of every production to less than two

6. make terminals occur alone on right-hand side

5

(1) Unproductive Non-terminals

• Consider the following grammar with start non-terminal “stmt”

stmt→ identifier := identifier

| while (expr) stmt

| if (expr) stmt else stmt

expr→ term+ term | term− term

term→ factor ∗ factor
factor→ (expr)

• There is no derivation of a sequence of tokens from expr

• Every derivation step of expr has at least one expr, term, or factor

• If a non-terminal cannot derive sequence of tokens we call it
unproductive

6

(1) Unproductive Non-terminals

Productive Non-terminals

• Productive non-terminals are obtained using these two rules (what
remains is unproductive)

1) Terminals are productive

2) If A→ α is a production rule and each non-terminal symbols of α is
productive then A is also productive
(α can also be ε)

Remove Unproductive Non-terminals

• Remove all production rules in which an unproductive non-terminal
appears either on the left or the right

7

Exercise

Question:

• Remove all the unproductive non-terminals from the following
grammar.

S → B | AC
B → aAa

A→ ε

C → cC | DA
D → C

Answer:
S → B

B → aAa

A→ ε

8

Exercise

Question:

• Remove all the unproductive non-terminals from the following
grammar.

S → B | AC
B → aAa

A→ ε

C → cC | DA
D → C

Answer:
S → B

B → aAa

A→ ε
8

(2) Unreachable non-terminals

• Consider the following grammar with start non-terminal “program”

program→ stmt | stmt program

stmt→ assignment | whileStmt

assignment→ expr = expr

ifStmt→ if (expr) stmt else stmt

whileStmt→ while (expr) stmt

• No way to reach non-terminal “ifStmt” from “program”

9

(2) Unreachable non-terminals

Reachable Non-terminals

• Reachable non-terminals are obtained using these two rules (what
remains is unreachable)

1) Starting non-terminal is reachable

2) If A→ α is a production rule and A is reachable, each non-terminal
symbols of α is also reachable

Remove Unreachable Non-terminals

• Remove all production rules in which an unreachable non-terminal
appears either on the left or the right

10

(3) Removing ε-Production Rules

• Ensure only top-level non-terminal can be nullable

Original Grammar Grammar after removing ε-rules

program→ stmtSeq

stmtSeq→ stmt | stmt ; stmtSeq

stmt→ "" | assignment

| whileStmt | blockStmt

blockStmt→ { stmtSeq }

assignment→ expr = expr

whileStmt→ while (expr) stmt

expr→ identifier

program→ "" | stmtSeq

stmtSeq→ stmt | stmt ; stmtSeq

| ; stmtSeq | stmt ; | ;
stmt→ assignment

| whileStmt | blockStmt

blockStmt→ { stmtSeq } | {}
assignment→ expr = expr

whileStmt→ while (expr) stmt

whileStmt→ while (expr)

expr→ identifier

11

Recap: Nullable Non-terminals

• Definition: Variable X is nullable if X ⇒∗ ε

• Rules to compute the nullable variables of a grammar:

1) If A→ ε is a production rule then A is nullable

2) If B → X1X2 · · ·Xn is a production rule and all the Xi are nullable
then B is also nullable

12

(3) Removing ε-Production Rules

• Compute the set of nullable non-terminals

• For each rule A→ X1 · · ·Xn add all production rules that
that can be formed by eliminating any combination of nullable Xi’s

• Repeat the above step for the newly added rules

• Remove all rules with empty right-hand sides

• If starting symbol S was nullable, then introduce a new start symbol
S′ instead, and add rule S′ → S | ""

• Note: number of added rules for A→ X1 · · ·Xn is O(2k)

(where k is the number of nullable Xi’s)

13

(3) Removing ε-Production Rules

• Since stmtSeq is nullable, the rule
blockStmt → { stmtSeq }

gives
blockStmt → { stmtSeq } | { }

• Since stmtSeq and stmt are nullable, the rule
stmtSeq → stmt | stmt ; stmtSeq

gives
stmtSeq → stmt | stmt ; stmtSeq
| ; stmtSeq | stmt ; | ;

14

Exercise

Question:

1) Remove the ε production rules from the following grammar.

2) Remove unproductive non-terminals after step 1.

S → ABC

B → CAb | b
C → ASD | AD
D → CaA | ε
A→ ε

Answer:
After removing ε rules:

S → ABC | AB | B | BC
B → CAb | Ab | b | Cb
C → ASD | AD | AS | S | SD | A | D
D → CaA | Ca | a | aA

15

Exercise

Question:

1) Remove the ε production rules from the following grammar.

2) Remove unproductive non-terminals after step 1.

S → ABC

B → CAb | b
C → ASD | AD
D → CaA | ε
A→ εAnswer:

After removing ε rules:

S → ABC | AB | B | BC
B → CAb | Ab | b | Cb
C → ASD | AD | AS | S | SD | A | D
D → CaA | Ca | a | aA 15

(4) Eliminating unit productions

• Single production rule is of the form

X → Y

where X, Y are non-terminals

program→ stmtSeq

stmtSeq→ stmt

| stmt ; stmtSeq

stmt→ assignment | whileStmt

assignment→ expr = expr

whileStmt→ while (expr) stmt

16

(4) Eliminating unit productions

• If there is a unit production X → Y put an edge (X,Y) into graph

• If there is a path from Y to Z in the graph, and there is rule
Z → X1X2 · · ·Xn then add rule Y → X1X2 · · ·Xn

At the end, remove all unit productions

17

(4) Eliminating unit productions

program→ stmtSeq

stmtSeq→ stmt | stmt ; stmtSeq

stmt→ assignment | whileStmt

assignment→ expr = expr

whileStmt→ while (expr) stmt

After removing unit productions:

program→ expr = expr | while (expr) stmt

| stmt ; stmtSeq

stmtSeq→ expr = expr | while (expr) stmt

| stmt ; stmtSeq

stmt→ expr = expr | while (expr) stmt

assignment→ expr = expr

whileStmt→ while (expr) stmt
18

(5) Reducing Arity

• No more than 2 non-terminals on RHS

stmt→ while (expr) stmt

• becomes

stmt→ while stmt1

stmt1 → (stmt2

stmt2 → expr stmt3

stmt3 →)stmt

19

(6) A non-terminal for each terminal

stmt→ while (expr) stmt

• becomes

stmt→ Nwhile stmt1

stmt1 → N(stmt2

stmt2 → expr stmt3

stmt3 → N)stmt

Nwhile → while

N(→ (

N) →)

20

Order of steps in conversion to CNF

1. remove unproductive non-terminals (optional)

2. remove unreachable non-terminals (optional)

3. make terminals occur alone on right-hand side

4. reduce arity of every production to ≤ 2

5. remove epsilons

6. remove unit productions X → Y

7. unproductive non-terminals

8. unreachable non-terminals

21

