Handout 9 (LLVM, SSA and CPS)

Reflecting on our two tiny compilers targetting the JVM, the code generation
part was actually not so hard, no? Pretty much just some post-traversal of the
abstract syntax tree, yes? One of the reasons for this ease is that the JVM is
a stack-based virtual machine and it is therefore not hard to translate deeply-
nested arithmetic expressions into a sequence of instructions manipulating the
stack. The problem is that “real” CPUs, although supporting stack operations,
are not really designed to be stack machines. The design of CPUs is more like,
here is a chunk of memory —compiler, or better compiler writers, do something
with it. Consequently, modern compilers need to go the extra mile in order to
generate code that is much easier and faster to process by CPUs. To make this
all tractable for this module, we target the LLVM Intermediate Language. In
this way we can take advantage of the tools coming with LLVM. For example
we do not have to worry about things like register allocations.

LLVM! is a beautiful example that projects from Academia can make a differ-
ence in the World. LLVM started in 2000 as a project by two researchers at the
University of Illinois at Urbana-Champaign. At the time the behemoth of com-
pilers was gcc with its myriad of front-ends for other languages (C++, Fortran,
Ada, Go, Objective-C, Pascal etc). The problem was that gcc morphed over time
into a monolithic gigantic piece of m...ehm software, which you could not mess
about in an afternoon. In contrast, LLVM is designed to be a modular suite of
tools with which you can play around easily and try out something new. LLVM
became a big player once Apple hired one of the original developers (I cannot
remember the reason why Apple did not want to use gcc, but maybe they were
also just disgusted by its big monolithic codebase). Anyway, LLVM is now the
big player and gcc is more or less legacy. This does not mean that program-
ming languages like C and C++ are dying out any time soon—they are nicely
supported by LLVM.

We will target the LLVM Intermediate Language, or LLVM Intermediate
Representation (short LLVM-IR). The LLVM-IR looks very similar to the assem-
bly language of Jasmin and Krakatau. It will also allow us to benefit from the
modular structure of the LLVM compiler and let for example the compiler gen-
erate code for different CPUs, like X86 or ARM. That means we can be agnostic
about where our code actually runs. We can also be ignorant about optimising
code and allocating memory efficiently.

However, what we have to do for LLVM is to generate code in Static Single-
Assignment format (short SSA), because that is what the LLVM-IR expects from
us. A reason why LLVM uses the SSA format, rather than JVM-like stack in-
structions, is that stack instructions are difficult to optimise—you cannot just
re-arrange instructions without messing about with what is calculated on the
stack. Also it is hard to find out if all the calculations on the stack are actually

© Christian Urban, King’s College London, 2019
Thttp://11vm.org

http://llvm.org

necessary and not by chance dead code. The JVM has for all these obstacles
sophisticated machinery to make such “high-level” code still run fast, but let’s
say that for the sake of argument we do not want to rely on it. We want to gen-
erate fast code ourselves. This means we have to work around the intricacies of
what instructions CPUs can actually process fast. This is what the SSA format
is designed for.

The main idea behind the SSA format is to use very simple variable assign-
ments where every variable is assigned only once. The assignments also need
to be primitive in the sense that they can be just simple operations like addi-
tion, multiplication, jumps, comparisons and so on. Say, we have an expression
((14a)+ (34 (bx5))), then the corresponding SSA format is

1 let tmp0 = add 1 a in

> let tmpl mul b 5 in

3 let tmp2 add 3 tmpl in

+ let tmp3 add tmpO tmp2 in tmp3

where every variable is used only once (we could not write tmpl = add 3 tmpl
in Line 3 for example). There are sophisticated algorithms for imperative lan-
guages, like C, that efficiently transform a high-level program into SSA for-
mat. But we can ignore them here. We want to compile a functional language
and there things get much more interesting than just sophisticated. We will
need to have alook at CPS translations, where the CPS stands for Continuation-
Passing-Style—basically black programming art or abracadabra programming.
So sit tight.

LLVM-IR

Before we start, let’s first have a look at the LLVM Intermediate Representation
in more detail. The LLVM-IR is in between the frontends and backends of the
LLVM framework. It allows compilation of multiple source languages to mul-
tiple targets. It is also the place where most of the target independent optimi-
sations are performed.

What is good about our toy Fun language is that it basically only contains ex-
pressions (be they arithmetic expressions, boolean expressions or if-expressions).
The exception are function definitions. Luckily, for them we can use the mecha-
nism of defining functions in the LLVM-IR (this is similar to using JVM methods
for functions in our earlier compiler). For example the simple Fun program

def sqr(x) = x * x
can be compiled to the following LLVM-IR function:

define i32 @sqr(i32 %x) {
%tmp = mul i32 %x, %x
ret i32 Ytmp

First notice that all variable names, in this case x and tmp, are prefixed with %
in the LLVM-IR. Temporary variables can be named with an identifier, such as
tmp, or numbers. Function names, since they are “global”, need to be prefixed
with @-symbol. Also, the LLVM-IR is a fully typed language. The i32 type
stands for 32-bit integers. There are also types for 64-bit integers (i64), chars
(i8), floats, arrays and even pointer types. In the code above, sqr takes an
argument of type i32 and produces a result of type 132 (the result type is in
front of the function name, like in C). Each arithmetic operation, for example
addition and multiplication, are also prefixed with the type they operate on.
Obviously these types need to match up... but since we have in our programs
only integers, 132 everywhere will do. We do not have to generate any other
types, but obviously this is a limitation in our Fun language.

There are a few interesting instructions in the LLVM-IR which are quite dif-
ferent than what we have seen in the JVM. Can you remember the kerfuffle
we had to go through with boolean expressions and negating the condition?
In the LLVM-IR, branching if-conditions is implemented differently: there is a
separate br-instruction as follows:

br il %var, label %if_br, label Y%else_br

The type i1 stands for booleans. If the variable is true, then this instruction
jumps to the if-branch, which needs an explicit label; otherwise to the else-
branch, again with its own label. This allows us to keep the meaning of the
boolean expression as is when compiling if’s. A value of type boolean is gen-
erated in the LLVM-IR by the icmp-instruction. This instruction is for integers
(hence the i) and takes the comparison operation as argument. For example

icmp eq i32 Yx, %y ; for equal

icmp sle i32 %x, %y ; signed less or equal
icmp slt i32 Y%x, %y g signed less than
icmp ult i32 Y%x, %y ; unsigned less than

In some operations, the LLVM-IR distinguishes between signed and unsigned
representations of integers.

It is also easy to call another function in LLVM-IR: as can be seen from Fig-
ure ?? we can just call a function with the instruction call and can also assign
the result to a variable. The syntax is as follows

hvar = call i32 @foo(...args...)

where the arguments can only be simple variables, not compound expressions.

Conveniently, you can use the program 11i, which comes with LLVM, to in-
terpret programs written in the LLVM-IR. So you can easily check whether the
code you produced actually works. To get a running program that does some-
thing interesting you need to add some boilerplate about printing out numbers
and a main-function that is the entry point for the program (see Figure ?? for a
complete listing). Again this is very similar to the boilerplate we needed to add
in our JVM compiler.

1 @.str = private constant [4 x i8] c"7d\0A\OO"

2

3 declare i32 @printf (i8x*, ...)

4

5 ; prints out an integer

¢ define i32 @printInt(i32 %x) {

7 %t0 = getelementptr [4 x i8], [4 x i8]* @.str, i32 0, i32 0
8 call i32 (i8%, ...) @printf(i8x %t0, i32 %x)
9 ret i32 %x

10 }

11

12 ; square function

13 define i32 @sqr(i32 %x) {

14 %tmp = mul i32 %x, %x

15 ret i32 Y%tmp

16 }

17

18 ; main

v define i32 @main() {
20 %1 = call i32 @sqr(i32 5)

21 %2 = call i32 @printInt(i32 %1)
2 ret i32 %1
PXN

Figure 1: An LLVM-IR program for calculating the square function. It calls this
function in @main with the argument 5. The code for the sqr function is in Lines
13 — 16. The main function calls sqr and then prints out the result. The other
code is boilerplate for printing out integers.

You can generate a binary for the program in Figure ?? by using the 11c-
compiler and then gcc, whereby 11c generates an object file and gcc (that is
clang) generates the executable binary:

llc -filetype=obj sqr.1ll
gcc sqr.o -o a.out
./a.out

> 25

Our Own Intermediate Language

Remember compilers have to solve the problem of bridging the gap between
“high-level” programs and “low-level” hardware. If the gap is too wide for
one step, then a good strategy is to lay a stepping stone somewhere in between.
The LLVM-IR itself is such a stepping stone to make the task of generating and
optimising code easier. Like a real compiler we will use our own stepping stone
which I call the K-language. For what follows recall the various kinds of expres-

sions in the Fun language. For convenience the Scala code of the correspond-
ing abstract syntax trees is shown on top of Figure ??. Below is the code for
the abstract syntax trees in the K-language. In K, here are two kinds of syn-
tactic entities, namely K-values and K-expressions. The central constructor of the
K-language is KLet. For this recall in SSA that arithmetic expressions such as
((14a)+ (34 (b5))) need to be broken up into smaller “atomic” steps, like
1)

let tmp0O = add 1 a in

let tmpl mul b 5 in

let tmp2 = add 3 tmpl in

let tmp3 add tmpO tmp2 in
tmp3

Here tmp3 will contain the result of what the whole expression stands for. In
each individual step we can only perform an “atomic” operation, like addition
or multiplication of a number and a variable. We are not allowed to have for
example an if-condition on the right-hand side of an equals. Such constraints
are enforced upon us because of how the SSA format works in the LLVM-IR.
By having in KLet taking first a string (standing for an intermediate result) and
second a value, we can fulfil this constraint “by construction” —there is no way
we could write anything else than a value.

To sum up, K-values are the atomic operations that can be on the right-hand
side of equal-signs. The K-language is restricted such that it is easy to generate
the SSA format for the LLVM-IR.

CPS-Translations

CPS stands for Continuation-Passing-Style. It is a kind of programming tech-
nique often used in advanced functional programming. Before we delve into
the CPS-translation for our Fun language, let us look at CPS-versions of some
well-known functions. Consider

def fact(n: Int) : Int =
if (n == 0) 1 else n * fact(n - 1)
This is clearly the usual factorial function. But now consider the following ver-
sion of the factorial function:

def factC(n: Int, ret: Int => Int) : Int =
if (n == 0) ret(l1)
else factC(n - 1, x => ret(n * x))

factC(3, identity)

This function is called with the number, in this case 3, and the identity-function
(which returns just its input). The recursive calls are:

// Fun language (expressions)
abstract class Exp
abstract class BExp

case
case
case
case
case
case
case
case

class
class
class
class
class
class
class
class

Call(name: String, args: List[Exp]) extends Exp
If(a: BExp, el: Exp, e2: Exp) extends Exp
Write(e: Exp) extends Exp

Var(s: String) extends Exp

Num(i: Int) extends Exp

Aop(o: String, al: Exp, a2: Exp) extends Exp
Sequence(el: Exp, e2: Exp) extends Exp

Bop(o: String, al: Exp, a2: Exp) extends BExp

// K-language (K-expressions, K-values)
abstract class KExp
abstract class KVal

case
case
case
case
case

case
case
case

class
class
class
class
class

class
class
class

KVar(s: String) extends KVal

KNum(i: Int) extends KVal

Kop(o: String, vl: KVal, v2: KVal) extends KVal
KCall(o: String, vrs: List[KVal]) extends KVal
KWrite(v: KVal) extends KVal

KIf(x1: String, el: KExp, e2: KExp) extends KExp
KLet (x: String, v: KVal, e: KExp) extends KExp
KReturn(v: KVal) extends KExp

Figure 2: Abstract syntax trees for the Fun language.

factC(2, x => identity (3 * x))
factC(1l, x => identity(3 * (2 * x)))
factC(0, x => identity (3 * (2 * (1 * x))))

Having reached 0, we get out of the recursion and apply 1 to the continuation
(see if-branch above). This gives

identity(3 * (2 * (1 * 1)))
=3 % (2 % (1 % 1))
=6

which is the expected result. If this looks somewhat familiar, then this is not
a 1000 miles off, because functions with continuations can be seen as a kind
of generalisation of tail-recursive functions. Anyway notice how the continua-
tions is “stacked up” during the recursion and then “unrolled” when we apply 1
to the continuation. Interestingly, we can do something similar to the Fibonacci
function where in the traditional version we have two recursive calls. Consider
the following function

def fibC(n: Int, ret: Int => Int) : Int =
if (n == [== 1) ret(1)
else fibC(n - 1,
rli => fibC(n - 2,
r2 => ret(rl + r2)))

Here the continuation is a nested function essentially wrapping up the second
recursive call. Let us check how the recursion unfolds when called with 3 and
the identity function:

fibC (3, id)
fibC(2, rl => fibC(1, r2 => id(rl + r2)))
fibC(1, r1 =>
fibC(0, r2 => fibC(1, r2a => id((r1 + r2) + r2a))))
fibC(0, r2 => fibC(1l, r2a => id((1 + r2) + r2a)))
fibC(1, r2a => id((1 + 1) + r2a))
id((1 + 1) + 1)
(1 + 1) +1
3

Let us now come back to the CPS-translations for the Fun language. The
main difficulty of generating instructions in SSA format is that large compound
expressions need to be broken up into smaller pieces and intermediate results

need to be chained into later instructions. To do this conveniently, CPS-translations

have been developed. They use functions (“continuations”) to represent what
is coming next in a sequence of instructions. Continuations are functions of
type KVal to KExp. They can be seen as a sequence of KLets where there is a
“hole” that needs to be filled. Consider for example

1 let tmp0 = add 1 a in
> let tmpl mul [J 5 in

s let tmp2 = add 3 tmpl in
s let tmp3 = add tmpO0 tmp2 in
5 tmp3

where in the second line is a [J which still expects a KVal to be filled in before
it becomes a “proper” KExp. When we apply and argument to the continua-
tion (remember they are functions) we essentially fill something into the corre-
sponding hole. The code of the CPS-translation is

def CPS(e: Exp)(k: KVal => KExp) : KExp =
e match { ... }

where k is the continuation and e is the expression to be compiled. In case we
have numbers or variables, we can just apply the continuation like

k(KNum(n)) k(KVar(x))

This would just fill in the J in a KLet-expression. More interesting is the case
for an arithmetic expression.

case Aop(o, el, e2) => {
val z = Fresh("tmp")
CPS(el) (y1 =>

CPS(e2) (y2 => KLet(z, Kop(o, y1, y2), k(KVar(z)))))

