
Compilers and
Formal Languages (9)

Email: christian.urban at kcl.ac.uk
Office: N7.07 (North Wing, Bush House)
Slides: KEATS (also homework is there)

CFL 09, King’s College London – p. 1/30

While Language
Stmt ::= skip

| Id := AExp
| if BExp then Block else Block
| while BExp do Block
| read Id
| write Id
| write String

Stmts ::= Stmt ; Stmts | Stmt

Block ::= { Stmts } | Stmt

AExp ::= …
BExp ::= …

CFL 09, King’s College London – p. 2/30

Fibonacci Numbers

write "Fib";
read n;
minus1 := 0;
minus2 := 1;
while n > 0 do {

temp := minus2;
minus2 := minus1 + minus2;
minus1 := temp;
n := n ‐ 1

};
write "Result";
write minus2

CFL 09, King’s College London – p. 3/30

BF***
some big array, say a; 7 (8) instructions:
>move ptr++
<move ptr‐‐
+ add a[ptr]++
‐ subtract a[ptr]‐‐
. print out a[ptr] as ASCII
[if a[ptr] == 0 jump just after the corresponding];
otherwise ptr++
] if a[ptr] != 0 jump just after the corresponding [;
otherwise ptr++

CFL 09, King’s College London – p. 4/30

Arrays inWhile

new arr[15000]

x := 3 + arr[3 + y]

arr[42 * n] := ...

CFL 09, King’s College London – p. 5/30

NewArrays

new arr[number]

ldc number
newarray int
astore loc_var

CFL 09, King’s College London – p. 6/30

Array Update

arr[...] :=

aload loc_var
index_aexp
value_aexp
iastore

CFL 09, King’s College London – p. 7/30

Array Lookup in AExp

...arr[...]...

aload loc_var
index_aexp
iaload

CFL 09, King’s College London – p. 8/30

Using a compiler,
how can you mount the
perfect attack against a system?

CFL 09, King’s College London – p. 9/30

What is a perfect attack?

1 you can potentially completely take over a target system
2 your attack is (nearly) undetectable
3 the victim has (almost) no chance to recover

CFL 09, King’s College London – p. 10/30

clean
compiler

login
(src)

login
(bin)■

CFL 09, King’s College London – p. 11/30

clean
compiler

login
(src)

login
(bin)

■

CFL 09, King’s College London – p. 11/30

hacked
compiler

login
(src)

login
(bin)■

CFL 09, King’s College London – p. 11/30

V0.01

Scala

host language

my compiler (src)

V0.02

Scala

…
V1.00

Scala

V1.00

V1.01

V1.01

V1.02

…

…

no host language
needed

CFL 09, King’s College London – p. 12/30

V0.01

Scala

host language

my compiler (src)
V0.02

Scala

…
V1.00

Scala

V1.00

V1.01

V1.01

V1.02

…

…

no host language
needed

CFL 09, King’s College London – p. 12/30

V0.01

Scala

host language

my compiler (src)
V0.02

Scala

…
V1.00

Scala

V1.00

V1.01

V1.01

V1.02

…

…

no host language
needed

CFL 09, King’s College London – p. 12/30

V0.01

Scala

host language

my compiler (src)
V0.02

Scala

…
V1.00

Scala

V1.00

V1.01

V1.01

V1.02

…

…

no host language
needed

CFL 09, King’s College London – p. 12/30

Hacking Compilers

KenThompson
Turing Award, 1983

Ken Thompson showed how to hide a Tro-
janHorse in a compilerwithout leaving any
traces in the source code.

No amount of source level verification will
protect you from such Thompson-hacks.

CFL 09, King’s College London – p. 13/30

Hacking Compilers

KenThompson
Turing Award, 1983

Ken Thompson showed how to hide a Tro-
janHorse in a compilerwithout leaving any
traces in the source code.

No amount of source level verification will
protect you from such Thompson-hacks.

CFL 09, King’s College London – p. 13/30

1) Assume you ship the compiler as
binary and also with sources.

2) Make the compiler aware when it
compiles itself.

3) Add the Trojan horse.
4) Compile.
5) Delete Trojan horse from the sources

of the compiler.
6) Go on holiday for the rest of your life.

;o)

Hacking Compilers

KenThompson
Turing Award, 1983

Ken Thompson showed how to hide a Tro-
janHorse in a compilerwithout leaving any
traces in the source code.

No amount of source level verification will
protect you from such Thompson-hacks.

CFL 09, King’s College London – p. 13/30

CFL 09, King’s College London – p. 14/30

Compilers & Boeings 777
First flight in 1994. They want to achieve triple
redundancy in hardware faults.

They compile 1 Ada program to

Intel 80486
Motorola 68040 (old Macintosh’s)
AMD 29050 (RISC chips used often in laser printers)

using 3 independent compilers.

Airbus uses C and static analysers. Recently started using
CompCert.

CFL 09, King’s College London – p. 15/30

Compilers & Boeings 777
First flight in 1994. They want to achieve triple
redundancy in hardware faults.

They compile 1 Ada program to

Intel 80486
Motorola 68040 (old Macintosh’s)
AMD 29050 (RISC chips used often in laser printers)

using 3 independent compilers.

Airbus uses C and static analysers. Recently started using
CompCert.

CFL 09, King’s College London – p. 15/30

Goal
Remember the Bridges example?
Can we look at our programs and somehow ensure they
are bug free/correct?

Very hard: Anything interesting about programs is
equivalent to the Halting Problem, which is
undecidable.

Solution: We avoid this “minor” obstacle by being as
close as possible of deciding the halting problem,
without actually deciding the halting problem. ⇒ yes,
no, don’t know (static analysis)

CFL 09, King’s College London – p. 16/30

Goal
Remember the Bridges example?
Can we look at our programs and somehow ensure they
are bug free/correct?

Very hard: Anything interesting about programs is
equivalent to the Halting Problem, which is
undecidable.

Solution: We avoid this “minor” obstacle by being as
close as possible of deciding the halting problem,
without actually deciding the halting problem. ⇒ yes,
no, don’t know (static analysis)

CFL 09, King’s College London – p. 16/30

Goal
Remember the Bridges example?
Can we look at our programs and somehow ensure they
are bug free/correct?

Very hard: Anything interesting about programs is
equivalent to the Halting Problem, which is
undecidable.

Solution: We avoid this “minor” obstacle by being as
close as possible of deciding the halting problem,
without actually deciding the halting problem. ⇒ yes,
no, don’t know (static analysis)

CFL 09, King’s College London – p. 16/30

What is Static Analysis?

depending on some initial input, a program (behaviour)
will “develop” over time.

CFL 09, King’s College London – p. 17/30

What is Static Analysis?

CFL 09, King’s College London – p. 18/30

What is Static Analysis?

CFL 09, King’s College London – p. 19/30

What is Static Analysis?

to be avoided

CFL 09, King’s College London – p. 20/30

What is Static Analysis?

this needs more work

CFL 09, King’s College London – p. 21/30

What is Static Analysis?

CFL 09, King’s College London – p. 22/30

Concrete Example:
Are Vars Definitely Initialised?

Assuming x is initialised, what about y?

Prog. 1:

if x < 1 then y := x else y := x + 1;
y := y + 1

Prog. 2:

if x < x then y := y + 1 else y := x;
y := y + 1

CFL 09, King’s College London – p. 23/30

Concrete Example:
Are Vars Definitely Initialised?

What should the rules be for deciding when a variable is
initialised?

variable x is definitely initialized after skip
iff x is definitely initialized before skip.

CFL 09, King’s College London – p. 24/30

Concrete Example:
Are Vars Definitely Initialised?

What should the rules be for deciding when a variable is
initialised?

variable x is definitely initialized after skip
iff x is definitely initialized before skip.

CFL 09, King’s College London – p. 24/30

A is the set of definitely defined variables:

A ▷ skip ▷ A

vars(a) ⊆ A

A ▷ (x := a) ▷ {x} ∪ A

A1 ▷ s1 ▷ A2 A2 ▷ s2 ▷ A3

A1 ▷ (s1; s2) ▷ A3

vars(b) ⊆ A A ▷ s1 ▷ A1 A ▷ s2 ▷ A2

A ▷ (if b then s1 else s2) ▷ A1 ∩ A2

vars(b) ⊆ A A ▷ s ▷ A′

A ▷ (while b do s) ▷ A

we start with A = {}

CFL 09, King’s College London – p. 25/30

A is the set of definitely defined variables:

A ▷ skip ▷ A

vars(a) ⊆ A

A ▷ (x := a) ▷ {x} ∪ A

A1 ▷ s1 ▷ A2 A2 ▷ s2 ▷ A3

A1 ▷ (s1; s2) ▷ A3

vars(b) ⊆ A A ▷ s1 ▷ A1 A ▷ s2 ▷ A2

A ▷ (if b then s1 else s2) ▷ A1 ∩ A2

vars(b) ⊆ A A ▷ s ▷ A′

A ▷ (while b do s) ▷ A

we start with A = {}

CFL 09, King’s College London – p. 25/30

A is the set of definitely defined variables:

A ▷ skip ▷ A

vars(a) ⊆ A

A ▷ (x := a) ▷ {x} ∪ A

A1 ▷ s1 ▷ A2 A2 ▷ s2 ▷ A3

A1 ▷ (s1; s2) ▷ A3

vars(b) ⊆ A A ▷ s1 ▷ A1 A ▷ s2 ▷ A2

A ▷ (if b then s1 else s2) ▷ A1 ∩ A2

vars(b) ⊆ A A ▷ s ▷ A′

A ▷ (while b do s) ▷ A

we start with A = {}

CFL 09, King’s College London – p. 25/30

A is the set of definitely defined variables:

A ▷ skip ▷ A

vars(a) ⊆ A

A ▷ (x := a) ▷ {x} ∪ A

A1 ▷ s1 ▷ A2 A2 ▷ s2 ▷ A3

A1 ▷ (s1; s2) ▷ A3

vars(b) ⊆ A A ▷ s1 ▷ A1 A ▷ s2 ▷ A2

A ▷ (if b then s1 else s2) ▷ A1 ∩ A2

vars(b) ⊆ A A ▷ s ▷ A′

A ▷ (while b do s) ▷ A

we start with A = {}

CFL 09, King’s College London – p. 25/30

A is the set of definitely defined variables:

A ▷ skip ▷ A

vars(a) ⊆ A

A ▷ (x := a) ▷ {x} ∪ A

A1 ▷ s1 ▷ A2 A2 ▷ s2 ▷ A3

A1 ▷ (s1; s2) ▷ A3

vars(b) ⊆ A A ▷ s1 ▷ A1 A ▷ s2 ▷ A2

A ▷ (if b then s1 else s2) ▷ A1 ∩ A2

vars(b) ⊆ A A ▷ s ▷ A′

A ▷ (while b do s) ▷ A

we start with A = {}

CFL 09, King’s College London – p. 25/30

Dijkstra on Testing

“Program testing can be a very effective way to show
the presence of bugs, but it is hopelessly inadequate
for showing their absence.”

What is good about compilers: the either seem to work, or go
horribly wrong (most of the time).

CFL 09, King’s College London – p. 26/30

Proving Programs to be Correct
Theorem: There are infinitely many prime numbers.

Proof…

similarly

Theorem: The program is doing what it is supposed to be
doing.

Long, long proof…

This can be a gigantic proof. The only hope is to have help from the
computer. ‘Program’ is here to be understood to be quite general
(compiler, OS, …).

CFL 09, King’s College London – p. 27/30

CanThis Be Done?

in 2008, verification of a small C-compiler
“if my input program has a certain behaviour, then the
compiled machine code has the same behaviour”
is as good as gcc ‐O1, but much, much less buggy

CFL 09, King’s College London – p. 28/30

Fuzzy Testing C-Compilers
tested GCC, LLVM and others by randomly generating
C-programs
found more than 300 bugs in GCC and also many in
LLVM (some of them highest-level critical)

about CompCert:

“The striking thing about our CompCert results is that the
middle-end bugs we found in all other compilers are absent. As of
early 2011, the under-development version of CompCert is the
only compiler we have tested for which Csmith cannot find
wrong-code errors. This is not for lack of trying: we have devoted
about six CPU-years to the task.”

CFL 09, King’s College London – p. 29/30

NextWeek

Revision Lecture

How many strings are in L(a∗)?

How many strings are in L((a+ b)∗)?
Are there more than in L(a∗)?

CFL 09, King’s College London – p. 30/30

NextWeek

Revision Lecture

How many strings are in L(a∗)?

How many strings are in L((a+ b)∗)?
Are there more than in L(a∗)?

CFL 09, King’s College London – p. 30/30

