CSCI 742 - Compiler Construction

Lecture 38
Register Allocation
Instructor: Hossein Hojjat

April 27, 2018

Register Machines

e Debate topic: stack or register architecture?

see e.g. Yunhe Shi et al. “Virtual Machine Showdown: Stack Versus Registers”
ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 4, 2008

Register Machines Benefit:
e Closer to modern CPUs (RISC architecture) and control-flow graphs

Examples: e RISC: ARM architecture, RISC-V
e CISC: x86 architecture

Directly Addressable RAM

Large - GB, slow even with cache

Few f
Registers

Basic Instructions of Register Machines

e Ri < Meml[R;] load
e Mem[Rj] + R; store
e Ri <+ R; © Ry compute: for an operation @

Efficient register machine code uses as few loads and stores as possible

State Mapped to Register Machine

Both dynamically allocated heap and stack expand

e Heap need not be contiguous; can request more 1GB

memory from the OS if needed Stack

L

Free Memory

e Stack grows downwards SP—>

Heap is more general:

e Can allocate, read/write, and deallocate, in any order 10MB

e Garbage Collector does deallocation automatically

Heap
- Must be able to find free space among used one,
roup free blocks into larger ones (compaction),...
R 2 (comp) 5OKB Constants
Stack is more efficient: .
Static Globals
e Allocation is simple: increment, decrement 0

e Top of stack pointer (SP) is often a register

depend on hardware
e |f stack grows towards smaller addresses:

(Exact picture may)
and operating system

- to allocate N bytes on stack (push): SP:=SP — N
- to deallocate N bytes on stack (pop): SP := SP+ N

JVM vs. General Register Machine Code

e Naive Correct Translation

JVM: Register Machine:
imul R1 + Mem|[SP]
SP=SP + 4
Rz < Mem|[SP]

Ry < Ry £ R>
Mem[SP] < R2

Using Registers

e Variables usually refer to memory

e &x yields a memory location

e Need to load variables into registers to perform operations on them
1. Load from memory into registers

2. Perform operation on registers

3. Store results from registers back to memory

Example: How many variables?

e Do we need 7 distinct registers if we wish to avoid load and stores?

e Variables: x , v,z ,xy,yz,xz,r

x = m[0];
y = m[1l];
Xy = X * ¥y
z = m[2];
Yz = Y*Z;
XZ = X*Z;

Example: How many variables?

e Do we need 7 distinct registers if we wish to avoid load and stores?

e Variables: x , v,z ,xy,yz,xz,r

x = m[0]; =
y = m[l]; y =
Xy = X * y; Xy =
z = m[2]; z =
VyZ = y*Z; yz =
XZ = X*Z; y =
r = xy + vyz; X =
m(3] = r + xz; m([3]

e Can do it with 5 only!

Xy + vz;

=Xty

// reuse y

// reuse x

Idea of Register Allocation

program: | x=m[0];y=m[1]] xy=x*y; z=m[2] | yz=y*z | xz=x*z jr=xy+yz m[3]=r+xz

live variable analysis result:

& yHEyav ey e zyz ey} fzyzg) {nxed - {3

X 1 1 1 1 1
y 1 1 1
1
2 1 1
Nz 1 1

Xz

Idea of Register Allocation

program: | x=m[0];y=m[1]] xy=x*y; z=m[2] | yz=y*z | xz=x*z |r=xy+yz|m[3]=r+xz
live variable analysis result:

& yHEy vy Hezyzay) {zyzg) {rxed {3

X 1 1 1 1 1

X 1 | | 1
yz
XZ

Ri

Ra

Rs

Ra
e Each color denotes a register
e Avoid overlap of same colors

e 4 registers are enough for this 7-variable program 7

Idea of Register Allocation

program: | x=m[0];y=m[1]] xy=x*y; z=m[2] | yz=y*z | xz=x*z jr=xy+yz|m[3]=r+xz
live variable analysis result:

& yHEy vy e zyzay) fzyzg) {xed {3
X 1 1 1 1 1

X 1 | | 1
yz
XZ | I

Rl x1 | | | |
R> y yz
Rs A | | [I xz

Ra Xyl | | 1 Ir
e Each color denotes a register

e Avoid overlap of same colors
e 4 registers are enough for this 7-variable program 7

Idea of Register Allocation

program: | x=m[0];y=m[1]] xy=x*y; z=m[2] | yz=y*z | xz=x*z jr=xy+yz m[3]=r+xz

live variable analysis result:

& EvHEyv ey wHezyzay) fzyzg) {rxed - {3

X 1 1 1 1
y 1 1

2 1 1

Yz |

Xz

X
e For each pair of variables determine if ‘y <z
there is a point at which they are both alive / \

e Construct interference graph // \\\ yz T

Idea of Register Allocation

program: | x=m[0];y=m[1]] xy=x*y; z=m[2] | yz=y*z | xz=x*z jr=xy+yz m[3]=r+xz

live variable analysis result:

& EvHEyv ey wHezyzay) fzyzg) {rxed - {3

x I I I |

y | I I

[

xy I I
yz

Xz

X
e For each pair of variables determine if Y

XZ
there is a point at which they are both alive y\\

e Construct interference graph // \ vz

Idea of Register Allocation

program: | x=m[0];y=m[1]] xy=x*y; z=m[2] | yz=y*z | xz=x*z jr=xy+yz m[3]=r+xz

live variable analysis result:

& EvHEyv ey wHezyzay) fzyzg) {rxed - {3

X | | | |

y | | |

z | 1
Xy | |
yz |
XZ

X
e For each pair of variables determine if ‘y\xz
there is a point at which they are both alive y

e Construct interference graph // \ /}\’Zl r

Idea of Register Allocation

program: | x=m[0];y=m[1]] xy=x*y; z=m[2] | yz=y*z | xz=x*z jr=xy+yz|m[3]=r+xz

live variable analysis result:

& yHEyv ey ez vz ay) fzyzg) {nxed {3

X | | | | |

y

z | |
Xy | | | |
yz
XZ

r

e Need to assign colors (register numbers) to
xy:4
nodes such that:

xz:3
e If there is an edge between nodes, then those \/ \
nodes have different colors / r:4
/

x:1

/

/

e Standard graph vertex coloring problem z:3

Register Interference Graph (RIG)

e Indicate whether there exists a point of time where both variables
are alive

e Look at the sets of live variables at all program points after running
live-variable analysis

e If two variables occur together, draw an edge
e We aim to assign different registers to such these variables

e Finding assignment of variables to K registers:
corresponds to coloring graph using K colors

Graph Coloring Problem

e NP hard
e In practice, there are heuristics that work for typical graphs

e If we cannot fit it all variables into registers, perform a spill:
Store variable into memory and load later when needed

Heuristic for Coloring with K Colors

Simplify:

e If there is a node with less than K neighbors, we will always be able to color it!
e So we can remove such node from the graph

- (if it exists, otherwise remove other node)
e This reduces graph size. It is useful, even though incomplete

(e.g. can color planar by at most 4 colors, yet can have nodes with many neighbors)

/ y?}‘z\ —> §/ / \\

/yz

Xy

Qy
. @Z/Y@ZZY @Z/y\x

10

Heuristic for Coloring with K Colors

Select:

e Assign colors backwards, adding nodes that were removed

e If the node was removed because it had < K neighbors, we will always
find a color

e If there are multiple possibilities, we can choose any color

Xy:4\xz:3 Xy:4\xz:3 Xy:4
;:%42\r.4 ;&\YZ/Q %:2&\%'2
03 1/ o z:3 x:1/ . z:3 x:l/ .

10

Use Computed Registers

x = m[0]; 4 R1 = m[0]
y = m[1]; 7&"2\3 R2 = m[1]
y:

Xy = X *x y, yz:2r:4 R4 = R1*R2
z = m[2]; z:3<-\g R3 = m[2]

yZ = y*2Z; R2 = R2%*R3
XZ = X*Z; | E;> R3 = R1x*R3

r = Xy + yz; R4 = R4 + R2

m[3] = resl + xz; m[3] = R4 + R3

11

Summary of Heuristic for Coloring

Simplify (forward, safe):
If there is a node with less than K neighbors, we will always be able to
color it, so we can remove it from the graph

Potential Spill (forward, speculative):
If every node has K or more neighbors, we still remove one of them we
mark it as node for potential spilling. Then remove it and continue

Select (backward):
Assign colors backwards, adding nodes that were removed

- If we find a node that was spilled, we check if we are lucky, that we
can color it. If yes, continue

- If not, insert instructions to save and load values from memory
(actual spill)
Restart with new graph
(graph is now easier to color as we killed a variable)

12

