
Coursework 3

This coursework is worth 4% and is due on 13 December at 16:00. You are asked
to implement a compiler for the WHILE language which targets the assembler
language provided by the Jasmin. This assembler is available from

http://jasmin.sourceforge.net

There is a user guide for Jasmin

http://jasmin.sourceforge.net/guide.html

and also a description of some of the instructions that the JVM understands

http://jasmin.sourceforge.net/instructions.html

You need to submit a document containing the answers for the questions below.
You can do the implementation in any programming language you like, but
you need to submit the source code with which you answered the questions.
However, the coursework will only be judged according to the answers. You can
submit your answers in a txt-file or as pdf.

Question 1 (marked with 2%)

You need to lex and parse WHILE programs and submit the assembler instruc-
tions for the Fibonacci program and for the program you submitted in Course-
work 2 in Question 3. The latter should be so modified that a user can input the
upper bound on the console (in the original question it was fixed to 100).

Question 2 (marked with 2%)

Extend the syntax of you language so that it contains also for-loops, like

for Id := AExp upto AExp do Block

The intended meaning is to first assign the variable Id the value of the first
arithmetic expression, then go through the loop, at the end increase the value of
the variable by 1, and finally test wether the value is not less or equal anymore
to the value of the second arithmetic expression. For example the following
instance of a for-loop is supposed to print out the numbers 2, 3, 4.

for i := 2 upto 4 do {

write i

}

1

http://jasmin.sourceforge.net
http://jasmin.sourceforge.net/guide.html
http://jasmin.sourceforge.net/instructions.html


There are two ways how this can be implemented: one is to adapt the code
generation part of the compiler and generate specific code for for-loops; the
other is to translate the abstract syntax tree of for-loops into an abstract syntax
tree using existing language constructs. For example the loop above could be
translated to the following while-loop:

i := 2;

while (i <= 4) do {

write i;

i := i + 1;

}

2


