
Handout 5 (Grammars & Parser)
While regular expressions are very useful for lexing and for recognising many
patterns in strings (like email addresses), they have their limitations. For exam‑
ple there is no regular expression that can recognise the language anbn (where
you have strings with n a’s followed by the same amount of b’s). Another
example for which there exists no regular expression is the language of well‑
parenthesised expressions. In languages like Lisp, whichuse parentheses rather
extensively, it might be of interest to know whether the following two expres‑
sions are well‑parenthesised or not (the left one is, the right one is not):

(((()()))()) (((()()))()))

Not being able to solve such recognition problems is a serious limitation. In
order to solve such recognition problems, we need more powerful techniques
than regular expressions. We will in particular look at context‑free languages.
They include the regular languages as the picture below about language classes
shows:

all languages

decidable languages

context sensitive languages
context‑free languages

regular languages

Each “bubble” stands for sets of languages (remember languages are sets of
strings). As indicated the set of regular languages is fully included inside the
context‑free languages, meaning every regular language is also context‑free,
but not vice versa. Below Iwill let you think, for example, what the context‑free
grammar is for the language corresponding to the regular expression (aaa)∗a.

Because of their convenience, context‑free languages play an important role
in ‘day‑to‑day’ text processing and in programming languages. Context‑free
in this setting means that “words” have one meaning only and this meaning is
independent from the context the “words” appear in. For example ambiguity
issues like

Time flies like an arrow; fruit flies like bananas.

from natural languages were the meaning of flies depends on the surrounding
context are avoided as much as possible.

Context‑free languages are usually specified by grammars. For example a
grammar for well‑parenthesised expressions can be given as follows:

P ::= (·P·) · P | ϵ

1

or a grammar for recognising strings consisting of ones is

O ::= 1 · O | 1

In general grammars consist of finitely many rules built up from terminal
symbols (usually lower‑case letters) and non‑terminal symbols (upper‑case letters
written in bold like A, N and so on). Rules have the shape

NT ::= rhs

where on the left‑hand side is a single non‑terminal and on the right a string
consisting of both terminals and non‑terminals including the ϵ‑symbol for indi‑
cating the empty string. We use the convention to separate components on the
right hand‑side by using the · symbol, as in the grammar forwell‑parenthesised
expressions. We also use the convention to use | as a shorthand notation for
several rules. For example

NT ::= rhs1 | rhs2

means that the non‑terminal NT can be replaced by either rhs1 or rhs2. If there
are more than one non‑terminal on the left‑hand side of the rules, then we need
to indicate what is the starting symbol of the grammar. For example the gram‑
mar for arithmetic expressions can be given as follows

E ::= N (1)
E ::= E ·+ · E (2)
E ::= E · − · E (3)
E ::= E · ∗ · E (4)
E ::= (·E·) (5)
N ::= N · N | 0 | 1 | . . . | 9 (6…)

where E is the starting symbol. A derivation for a grammar starts with the start‑
ing symbol of the grammar and in each step replaces one non‑terminal by a
right‑hand side of a rule. A derivation ends with a string in which only termi‑
nal symbols are left. For example a derivation for the string (1 + 2) + 3 is as
follows:

E → E + E by (2)
→ (E) + E by (5)
→ (E + E) + E by (2)
→ (E + E) + N by (1)
→ (E + E) + 3 by (6…)
→ (N + E) + 3 by (1)
→+ (1 + 2) + 3 by (1, 6…)

2

where on the right it is indicated which grammar rule has been applied. In the
last step we merged several steps into one.

The language of a context‑free grammar G with start symbol S is defined as
the set of strings derivable by a derivation, that is

{c1 . . . cn | S →∗ c1 . . . cn with all ci being non‑terminals}

A parse‑tree encodes how a string is derivedwith the starting symbol on top and
each non‑terminal containing a subtree for how it is replaced in a derivation.
The parse tree for the string (1 + 23) + 4 is as follows:

E

E

(E

E

N

1

+ E

N

2

N

3

)

+ E

N

4

We are often interested in these parse‑trees since they encode the structure of
how a string is derived by a grammar.

Before we come to the problem of constructing such parse‑trees, we need to
consider the following two properties of grammars. A grammar is left‑recursive
if there is a derivation starting from a non‑terminal, say NT which leads to a
string which again starts with NT. This means a derivation of the form.

NT → . . . → NT · . . .

It can be easily seen that the grammar above for arithmetic expressions is left‑
recursive: for example the rules E → E ·+ · E and N → N · N show that this
grammar is left‑recursive. But note that left‑recursiveness can involve more
than one step in the derivation. The problem with left‑recursive grammars
is that some algorithms cannot cope with them: with left‑recursive grammars
theywill fall into a loop. Fortunately every left‑recursive grammar can be trans‑
formed into one that is not left‑recursive, although this transformation might
make the grammar less “human‑readable”. For example if we want to give a
non‑left‑recursive grammar for numbers we might specify

N → 0 | . . . | 9 | 1 · N | 2 · N | . . . | 9 · N

Using this grammar we can still derive every number string, but we will never
be able to derive a string of the form N → . . . → N ·

The other property we have to watch out for is when a grammar is ambigu‑
ous. A grammar is said to be ambiguous if there are two parse‑trees for one

3

string. Again the grammar for arithmetic expressions shown above is ambigu‑
ous. While the shown parse tree for the string (1 + 23) + 4 is unique, this is
not the case in general. For example there are two parse trees for the string
1 + 2 + 3, namely

E

E

N

1

+ E

E

N

2

+ E

N

3

E

E

E

N

1

+ E

N

2

+ E

N

3

In particular in programming languages we will try to avoid ambiguous gram‑
mars because two different parse‑trees for a string mean a program can be in‑
terpreted in two different ways. In such cases we have to somehow make sure
the two different ways do not matter, or disambiguate the grammar in some
other way (for example making the + left‑associative). Unfortunately already
the problem of deciding whether a grammar is ambiguous or not is in general
undecidable. But in simple instance (the ones we deal with in this module) one
can usually see when a grammar is ambiguous.

Removing Left‑Recursion
Let us come back to the problem of left‑recursion and consider the following
grammar for binary numbers:

B ::= B · B | 0 | 1

It is clear that this grammar can create all binary numbers, but it is also clear that
this grammar is left‑recursive. Giving this grammar as is to parser combinators
will result in an infinite loop. Fortunately, every left‑recursive grammar can be
translated into one that is not left‑recursive with the help of some transforma‑
tion rules. Suppose we identified the “offensive” rule, then we can separate the
grammar into this offensive rule and the “rest”:

B ::= B · B︸︷︷︸
lft‑rec

| 0 | 1︸ ︷︷ ︸
rest

To make the idea of the transformation clearer, suppose the left‑recursive rule
is of the form Bα (the left‑recursive non‑terminal followed by something called
α) and the “rest” is called β. That means our grammar looks schematically as
follows

B ::= B · α | β

4

Toget rid of the left‑recursion, we are required to introduce a newnon‑terminal,
say B’ and transform the rule as follows:

B ::= β · B’
B’ ::= α · B’ | ϵ

In our example of binary numbers we would after the transformation end up
with the rules

B ::= 0 · B’ | 1 · B’
B’ ::= B · B’ | ϵ

A little thought should convince you that this grammar still derives all the bi‑
nary numbers (for example 0 and 1 are derivable because B’ can be ϵ). Less
clear might be why this grammar is non‑left recursive. For B’ it is relatively
clear because we will never be able to derive things like

B’ → . . . → B’ · . . .

because there will always be a B in front of a B’, and B now has always a 0
or 1 in front, so a B’ can never be in the first place. The reasoning is similar
for B: the 0 and 1 in the rule for B “protect” it from becoming left‑recursive.
This transformation does not mean the grammar is the simplest left‑recursive
grammar for binary numbers. For example the following grammar would do
as well

B ::= 0 · B | 1 · B | 0 | 1

The point is that we can in principle transform every left‑recursive grammar
into one that is non‑left‑recursive one. This explains why often the following
grammar is used for arithmetic expressions:

E ::= T | T ·+ · E | T · − · E
T ::= F | F · ∗ · T
F ::= num_token | (·E·)

In this grammar all Expressions, Terms and Factors are in some way protected
from being left‑recusive. For example if you start E you can derive another one
by going through T, then F, but then E is protected by the open‑parenthesis.

Removing ϵ‑Rules and CYK‑Algorithm
I showed above that the non‑left‑recursive grammar for binary numbers is

B ::= 0 · B’ | 1 · B’
B’ ::= B · B’ | ϵ

5

The transformation made the original grammar non‑left‑recursive, but at the
expense of introducing an ϵ in the second rule. Having an explicit ϵ‑rule is
annoying to, not in terms of looping, but in terms of efficiency. The reason is
that the ϵ‑rule always applies but since it recognises the empty string, it does not
make any progress with recognising a string. Better are rules like (·E·) where
something of the input is consumed. Getting rid of ϵ‑rules is also important for
the CYK parsing algorithm, which can give us an insight into the complexity
class of parsing.

It turns out we can also by some generic transformations eliminate ϵ‑rules
from grammars. Consider again the grammar above for binary numbers where
have a ruleB’ ::= ϵ. In this casewe look for rules of the (generic) formA := α · B’ · β.
That is there are rules that use B’ and something (α) is in front of B’ and some‑
thing follows (β). Such rules need to be replaced by additional rules of the form
A := α · β. In our running example there are the two rules for B which fall into
this category

B ::= 0 · B’ | 1 · B’

To follow the general scheme of the transfromation, the α is either is either 0 or
1, and the β happens to be empty. SO we need to generate new rules for the
form A := α · β, which in our particular example means we obtain

B ::= 0 · B’ | 1 · B’ | 0 | 1

Unfortunately B’ is also used in the rule

B’ ::= B · B’

For this we repeat the transformation, giving

B’ ::= B · B’ | B

In this case α was substituted with B and β was again empty. Once no rule is
left over, we can simply throw away the ϵ rule. This gives the grammar

B ::= 0 · B’ | 1 · B’ | 0 | 1

B’ ::= B · B’ | B

I let you think about whether this grammar can still recognise all binary num‑
bers and whether this grammar is non‑left‑recursive. The precise statement
for the transformation of removing ϵ‑rules is that if the original grammar was
able to recognise only non‑empty strings, then the transformed grammar will
be equivalent (matching the same set of strings); if the original grammar was
able to match the empty string, then the transformed grammar will be able to
match the same strings, except the empty string. So the ϵ‑removal does not pre‑
serve equivalence of grammars, but the small defect with the empty string is
not important for practical purposes.

6

So why are these transformations all useful? Well apart from making the
parser combinators work (remember they cannot deal with left‑recursion and
are inefficient with ϵ‑rules), a second reason is that they help with getting any
insight into the complexity of the parsing problem. The parser combinators are
very easy to implement, but are far from the most efficient way of processing
input (they can blow up exponentially with ambiguous grammars). The ques‑
tion remains what is the best possible complexity for parsing? It turns out that
this is O(n3) for context‑free languages.

To answer the question about complexity, let me describe next the CYK
algorithm (named after the authors Cocke–Younger–Kasami). This algorithm
works with grammars that are in Chomsky normalform.

TBD

7

