
Coursework 2

This coursework is worth 10% and is due on 10 November at 16:00. You are
asked to implement the Sulzmann&Lu lexer for theWHILE language. You can
do the implementation in any programming language you like, but you need
to submit the source code with which you answered the questions, otherwise
a mark of 0% will be awarded. You need to submit your written answers as
pdf—see attached questionaire. Code send as code. If you use Scala in your
code, a good place to start is the file lexer.sc and token.sc that are uploaded
to Github.

DisclaimerExclamation-Triangle

It should be understood that the work you submit represents your own effort.
You have not copied from anyone else including CoPilot, ChatGPT & Co. An
exception is the Scala code from KEATS and the code I showed during the lec-
tures, which you can both freely use. You can also use your own code from the
CW 1.

Question 1

To implement a lexer for the WHILE language, you first need to design the
appropriate regular expressions for the following eleven syntactic entities:

1. keywords are

while, if, then, else, do, for, to, true, false, read, write, skip

2. operators are: +, -, *, %, /, ==, !=, >, <, <=, >=, :=, &&, ||

3. letters are uppercase and lowercase

4. symbols are letters plus the characters ., _, >, <, =, ;, , (comma), \ and :

5. parentheses are (, {,) and }

6. digits are 0 to 9

7. there are semicolons ;

8. whitespaces are either " " (one or more) or \n or \t or \r

9. identifiers are letters followed by underscores __, letters or digits

10. numbers for numbers give a regular expression that can recognise 0, but
not numbers with leading zeroes, such as 001

1

11. strings are enclosed by double quotes, like "…", and consisting of symbols,
digits, parentheses, whitespaces and \n (note the latter is not the escaped
version but \ followed by n, otherwise we would not be able to indicate
in our strings when to write a newline).

12. comments start with // and contain symbols, spaces and digits until the
end-of-the-line markers

13. endo-of-line-markers are \n and \r\n

You can use the basic regular expressions

0, 1, c, r1 + r2, r1 · r2, r∗

but also the following extended regular expressions

[c1, c2, . . . , cn] a set of characters
r+ one or more times r
r? optional r
r{n} n-times r

Later on you will also need the record regular expression:

REC(x : r) record regular expression

Try to design your regular expressions to be as small as possible. For example
you should use character sets for identifiers and numbers. Feel free to use the
general character constructor CFUN introduced in CW 1.

Question 2

Implement the Sulzmann & Lu lexer from the lectures. For this you need to
implement the functions nullable and der (you can use your code from CW 1),
as well as mkeps and inj. These functions need to be appropriately extended
for the extended regular expressions from Q1. Write down in the questionaire
at the end the clauses for

mkeps([c1, c2, . . . , cn])
def
= ?

mkeps(r+) def
= ?

mkeps(r?)
def
= ?

mkeps(r{n})
def
= ?

inj ([c1, c2, . . . , cn]) c . . . def
= ?

inj (r+) c . . . def
= ?

inj (r?) c . . . def
= ?

inj (r{n}) c . . . def
= ?

2

where inj takes three arguments: a regular expression, a character and a value.
Test your lexer code with at least the two small examples below:

regex: string:

a{3} aaa
(a + 1){3} aa

Both strings should be successfully lexed by the respective regular expression,
that means the lexer returns in both examples a value.

Also add the record regular expression from the lectures to your lexer and
implement a function, say env, that returns all assignments from a value (such
that you can extract easily the tokens from a value).

Finally give all the tokens for your regular expressions from Q1 and the string

"read n;"

and use your env function to give the token sequence.

Question 3

Extendyour lexer fromQ2 to also simplify regular expressions after eachderiva-
tion step and rectify the computed values after each injection. Use this lexer to
tokenize six WHILE programs some of which are given in Figures 1 – 4. You
can find these programms also on Github under the cw2 directory. Give the
tokens of these programs where whitespaces and comments are filtered out.
Make sure you can tokenise exactly these programs.

write "Fib: ";
read n;
minus1 := 0;
minus2 := 1;
while n > 0 do {

temp := minus2;
minus2 := minus1 + minus2;
minus1 := temp;
n := n - 1

};
write "Result: ";
write minus2

Figure 1: Fibonacci program in the WHILE language.

3

start := 1000;
x := start;
y := start;
z := start;
while 0 < x do {

while 0 < y do {
while 0 < z do { z := z - 1 };
z := start;
y := y - 1

};
y := start;
x := x - 1

}

Figure 2: The three-nested-loops program in the WHILE language. (Usually
used for timing measurements.)

// Find all factors of a given input number
// by J.R. Cordy August 2005

write "Input n please";
read n;
write "The factors of n are:\n";
f := 2;
while (f < n / 2 + 1) do {

if ((n / f) * f == n)
then { write(f); write "\n" }
else { skip };
f := f + 1

}

Figure 3: A program that calculates factors for numbers in the WHILE lan-
guage.

4

// Collatz series
//
// needs writing of strings and numbers; comments

bnd := 1;
while bnd < 101 do {

write bnd;
write ": ";
n := bnd;
cnt := 0;

while n > 1 do {
write n;
write ",";

if n % 2 == 0
then n := n / 2
else n := 3 * n+1;

cnt := cnt + 1
};

write " => ";
write cnt;
write "\n";
bnd := bnd + 1

}

Figure 4: A program that calculates the Collatz series for numbers between 1
and 100.

5

Answers

Question 2:
(Use mathematical notation, such as r+, rather than code, such as PLUS(r))

mkeps([c1, c2, . . . , cn])
def
=

mkeps(r+) def
=

mkeps(r?)
def
=

mkeps(r{n})
def
=

inj ([c1, c2, . . . , cn]) c . . . def
=

inj (r+) c . . . def
=

inj (r?) c . . . def
=

inj (r{n}) c . . . def
=

Tokens for "read n;"

6

